SOME INFINITE SUMMATION FORMULAE INVOLVING KAMPE de FERIET FUNOTION

V. L. Deshpande

Pratap College, Amalner (Jalgaon)
(Received $18 . J$ une 1970)
Two infinite summation formulæ for Kampé de Fériet function have been established and results are generalised by applying operational techaique and method of finite mathematical induction. Various special cases are also obtained of which few are known.

The aim of this paper is to establish two infinite summation formulae for Kampé de Feriet function ${ }^{1}$. The results have been generalised by applying operational technique and method of finite mathematical induction. Some new interesting results have also been obtained. In what follows, $\left(a_{p}\right)$ denotes the sequence of p parameters $a_{1}, a_{2} \ldots \ldots a_{p}$ and $\left(\left(a_{p}\right)_{m}\right)$ has the interpretation $\prod_{i=1}^{p}\left(a_{i}\right)_{m}$ gnd so on. Following formulae are required in the proof :

From Srivastava ${ }^{2}$ [see p. 309, equations (3.2) and (3•3)]

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!}{ }_{p+1} F_{q}\left[\begin{array}{r}
-n,\left(a_{p}\right), x \\
\left(b_{q}\right), x
\end{array}\right]{ }_{r+1} F_{s}\left[\begin{array}{r}
-n,\left(\alpha_{r}\right), y \\
\left(\beta_{s}\right), y
\end{array}\right] \cdot z^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(\left(a_{p}\right)_{n}\right)\left(\left(\alpha_{r}\right)_{n}\right)}{n!\left(b_{q}\right)_{n}\left(\left(\beta_{s}\right)_{n}\right)} \times\left(\frac{x y z}{\left(1-z^{2}\right.}\right)^{n} \cdot{ }_{p+1} F_{q}\left[\begin{array}{r}
\lambda+n,\left(a_{p}+n\right), x z \\
\left(b_{q}+n\right), z-1
\end{array}\right] \times \\
& \quad \times{ }_{r+1} F_{s}\left[\begin{array}{r}
\lambda+n,\left(\alpha_{r}+n\right), \frac{y z}{\left(\beta_{s}+n\right), z-1}
\end{array}\right] \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!}{ }_{p+1} F_{q}\left[\begin{array}{r}
-n,\left(a_{p}\right), \\
\left(h_{q}\right), \\
x
\end{array}\right] \cdot r+1 F_{s+1}\left[\begin{array}{lr}
-n, & \left(a_{r}\right), \\
1-\lambda-n,\left(\beta_{s}\right), y
\end{array}\right] \cdot z^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)_{n}\right)\left(\left(a_{r}\right)_{n}\right)}{\left((b q)_{n}\right)\left(\left(\beta_{s}\right)_{n}\right)} \frac{(-x y z)^{n}}{n!}{ }_{p+1} F_{q}\left[\begin{array}{c}
\lambda,\left(a_{p}+n\right), \\
\left(b_{q}+n\right), \\
z-1
\end{array}\right] \times \\
& \dot{\times}{ }_{,} \boldsymbol{F}_{s}\left[\begin{array}{l}
\left(\alpha_{r}+n\right), y z \\
\left(\beta_{s}+n\right),
\end{array}\right] \tag{2}
\end{align*}
$$

(1) and (2) are valid for $p \leqslant q, r \leqslant s$ and $|x|,|y|$ and $|z|$ are so constrained that the two sides have a meaning.

From Srivastava ${ }^{3}$ (see p.763)

$$
\begin{aligned}
& =\frac{\sqrt{\pi} \cdot \Gamma(\mu+\nu) \cdot \Gamma(\mu-\nu) \cdot}{\Gamma\left(\mu+\frac{1}{2}\right) \cdot(2 z) \cdot} \boldsymbol{F}\left[\begin{array}{l|l}
\mu+\nu, \mu-\nu:\left(a_{p}\right) ;\left(\alpha_{f}\right) & \frac{x}{2 z} \\
\frac{2 \mu+1}{2}:(b q) ;\left(\beta_{s}\right) & \frac{y}{2 z}
\end{array}\right] \\
& \text { provided } \\
& p \leqslant q, r \leqslant s, \operatorname{Re}(\mu)>|\operatorname{Re}(\nu)|, \\
& \operatorname{Re}(z)>0, \\
& p<q, r<s \\
& F e(z)>R e(x)+R e(y), \\
& p=q, r=s
\end{aligned}
$$

 integrating w:s.t. to t between the limits 0 to $\infty 0$ and interehinging the order of indegtotion and summation, we have
$\sum_{n=0}^{\infty} \frac{(\lambda)_{n} z^{n}}{n!} \int_{0}^{\infty} e^{-z t} \cdot(t)^{\mu-1} \cdot K_{\nu}(z t) \times$
$\times{ }_{p+1} F_{q}\left[\begin{array}{r}-n,\left(a_{p}\right), x t \\ \left(h_{q}\right),\end{array}\right]{ }_{r+1} F_{s}\left[\begin{array}{r}-n,\left(a_{r}\right), y t \\ \left(\beta_{\alpha}\right), y\end{array}\right] d t$
$=(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(\left(a_{p}\right)\right)_{n}\left(\left(a_{r}\right)\right)_{n}}{n!\left(\left(b_{q}\right)\right)_{n}\left(\left(\beta_{s}\right)\right)_{n}}\left(\frac{x y z}{(1-z)^{2}}\right)^{n} \int_{0}^{\infty} e^{-z t} \cdot(t)^{\mu+2 n-1-1}$
$\times K_{v}(z t) \cdot p+{ }_{1} F_{T}\left[\begin{array}{r}\lambda+n,\left(a_{p}+n\right), \\ \left(z_{q}+n\right),\end{array} \frac{x z t}{z-1}\right] r+1 F_{s}\left[\begin{array}{r}\left.\lambda+n,\left(\alpha_{r}+n\right), \frac{y z t}{} \begin{array}{r}\left(\beta_{s}+n\right), \\ z-1\end{array}\right] d t\end{array}\right.$
Evaluating the integrals on both sides by using (3) and replaeing x by $2 x z_{2} y$ by $2 y z$ and μ, ν by $\frac{u+w}{2}, \frac{u-w}{2}$, we obtain the result

$$
\begin{align*}
& \left.\sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} \boldsymbol{F}\left[\begin{array}{l}
u, w:-n,\left(a_{p}\right) ;-n,\left(\alpha_{r}\right) \\
\frac{u+w+1}{2}:\left(b_{q}\right):\left(\beta_{s}\right)
\end{array}\right] \begin{array}{l}
y
\end{array}\right] z^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(\left(a_{p}\right)\right)_{n}\left(\left(\alpha_{r}\right)\right)_{n}(u)_{2 n}(w)_{2 n}}{n!((b q))_{n} \cdot\left(\left(\beta_{s}\right)\right)_{n}\left(\frac{u+w+1}{2}\right)_{2 n .}} \cdot\left(\frac{x y z}{(1-z)^{2}}\right)^{n} \times \\
& \times \bar{F}\left[\begin{array}{lrr|r}
u+2 n, w+2 n: \lambda+n,\left(a_{p}+n\right) ; \lambda+n,\left(\alpha_{r}+n\right), & \frac{x z}{z-1} \\
\frac{u+w+1}{2}+2 n & \left(b_{q}+n\right) ; & \left(\beta_{s}+n\right) & \frac{y z}{z-1}
\end{array}\right\} \tag{4}
\end{align*}
$$

Shailanly (2), we lave the restut

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n-}}{n!}\left[\begin{array}{l}
u, w:-n,\left(a_{p}\right) ;-n,\left(\alpha_{r}\right) \\
\frac{u+w+1}{2}:\left(b_{q}\right) ; 1-\lambda-n_{;}\left(\beta_{s}\right) \mid y
\end{array}\right] 2^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{\left(\left(a_{p}\right)\right)_{n}\left(\left(\alpha_{r}\right)\right)_{n}(u)_{2 n}(w)_{2 n}(-x y z)^{n}}{\left.\left(\left(b_{q}\right)\right)\left(\beta_{n}\right)\right)_{n}\left(\frac{u+w+1}{2}\right)_{2 n} n!} \times \\
& \times F\left\{\begin{array}{c|c|c|}
u+2 n, w+2 n: \lambda,\left(a_{p}+n\right) ;\left(\alpha_{r}+n\right) & x z-1 \\
\frac{u+w+1}{2}+2 n:\left(b_{q}+n\right) ;\left(\beta_{s}+n\right) & y z
\end{array}\right\} \tag{5}
\end{align*}
$$

The results (4) and (5) are valid provided $p \leqslant q, r \leqslant s, R e(u+w)>|R e(u-w)|$ and $|x|,|y|$ and $|z|$ are so constrained that the two sides have a meaning.

The results (4) and (5) are generalised as

$$
\sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} F\left[\begin{array}{l}
u, w,\left(c_{p}\right):-n,\left(a_{p}\right) ;-n,\left(\alpha_{r}\right) \mid x \\
\frac{u+w+1}{2},\left(c_{\sigma}^{\prime}\right):\left(b_{q}\right) ;\left(\beta_{s}\right)
\end{array}\right] y
$$

$=(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(\left(a_{p}\right)\right)_{n}\left(\left(\alpha_{r}\right)\right)_{n}(u)_{2 n}(w)_{2 n}\left(\left(c_{\rho}\right)\right)_{2 n}}{n d\left(\beta_{q}\right)_{n}\left(\left(\mathcal{F}_{s}\right)\right)_{n}\left(\frac{u+w+1}{2}\right)_{2 n}\left(\theta^{\prime} \sigma\right)_{2} n}\left[\frac{x y z}{(1-z)^{2}}\right]_{x}^{n}$
$\times F\left\{\begin{array}{lr}\left.u+2 n, w+2 n,\left(c_{p}+2 n\right): \lambda+n,\left(a_{p}+n\right) ; \lambda+n,\left(\alpha_{r}+n\right) \left\lvert\, \begin{array}{cc}\frac{x z}{z-1} \\ \frac{u+w+1}{2}+2 n, & \left(c_{\sigma}^{\prime}+2 n\right): \\ \frac{y z}{z-1}\end{array}\right.\right\}, ~\left(b_{q}+n\right) ; \quad\left(\beta_{s}+n\right)\end{array}\right.$
and

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} R\left[\begin{array}{l}
u, w,\left(c_{\rho}\right):-n,\left(a_{p}\right) ;-n,\left(\alpha_{r}\right) \\
\frac{u+w+1}{2},\left(c_{\sigma}^{\prime}\right):\left(b_{q}\right) ; 1-\lambda-n,\left(\beta_{s}\right) \mid y
\end{array}\right] \cdot z^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{\left.\left(\left(a_{p}\right)\right)_{n}\left(\left(\alpha_{r}\right)\right)_{n}(u)_{2_{n}}(w)_{2_{n}} f\left(c_{\rho}\right)\right)_{2 n}(-x y z)^{n}}{\left(\left(b_{q}\right)\right)_{n}\left(\left(\beta_{s}\right)\right)_{n}\left(\frac{u+\psi+1}{2}\right)_{2_{n}}\left(\left(c_{\sigma}^{\prime}\right)^{\prime}\right)_{2 n} n!} \times \\
& \cdots\left\{\begin{array}{cc|c}
u+2 n, w+2 n,\left(c_{\rho}+2 n\right): \lambda_{F}\left(a_{p}+n\right) ;\left(\alpha_{r}+n\right) & x z \\
\frac{u+w+1}{2}+2 n,\left(c_{\sigma}^{\prime}+2 n\right):\left(b_{q}+n\right) ;\left(\beta_{s}+n\right) & y z
\end{array}\right] \tag{7}
\end{align*}
$$

provided $p \leqslant q, r \leqslant s, \quad \operatorname{Re}(u+w)>|\operatorname{Re}(u-w)|$ and $|x|,|y|$ and $|z|$ are so constrained that the two sides have a meaning.

Clearly (6) is true for $\rho=\sigma=0$ because of (4). For the proof of (6) by the method of finite mathematical induction, let us assume it true for some values of ρ and σ. Replacing x by $x t, y$ by $y t$ in (6) and multiplying both sides by (()$^{c_{p}+1-1}$ and taking their Laplace transform w.r.t. t, we observe that ρ is replaced by $\rho+1$. Again in (6) substituting $x=x / t, y=y / t$, multiplying both sides by $(t)-c^{\prime} \sigma+1$ and taking the inverse Laplace transform we find that σ is replaced by $\sigma+1$. Thus the induction on ρ and σ is complete. Hence (6) is proved.

Starting with (5) and making use of the above technique we arrive at the formula (7)

PARTCULAR CASES

(A) In (6), setting $p=q=r=s=0, u=w+1, c_{\sigma}^{\prime}=w, \sigma-1=\rho$, replacing y by x and making use of the formula ${ }^{1}$, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} \dot{\rho}{ }_{1} F \rho\left[\begin{array}{r}
2 n,\left(c_{\rho}\right), \\
\left(c^{\prime}\right),
\end{array}\right] \cdot z^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda)_{n}^{\prime}\left(\left(c_{\rho}\right)\right)_{2 n}}{n!\left(\left(c_{\rho}^{\prime}\right)\right)_{2 n}}\left(\frac{x^{2} z}{(1-z)^{2}}\right)^{n} \rho+{ }_{1} F \rho\left[\begin{array}{r}
2 \lambda+2 n,\left(c_{\rho}+2 n\right), \\
\left(c_{p}^{\prime}+2 n\right): z-1
\end{array}\right] \tag{8}
\end{align*}
$$

(i) Employing Rainville ${ }^{4}$ formulae on left hand side of (8) with $x=1$, $\rho=1$ we have an interesting formula

$$
\begin{align*}
&{ }_{9} F_{2}\left\{\begin{array}{r}
\lambda, \frac{c_{1}^{\prime}-c_{1}}{2}, \frac{c_{1}^{\prime}-c_{1}+1}{2} \\
\frac{c_{1}^{\prime}}{2}, \left.\frac{c_{1}^{\prime}+1}{2} \right\rvert\, z
\end{array}\right]=(1-z)-\lambda \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(c_{1}\right)_{2 n}}{n!\left(c_{1}^{\prime}\right)_{2 n}}\left(\frac{z}{(1-z)^{2}}\right)^{n} \\
& \times{ }_{2} F_{1}\left[\left.\begin{array}{c}
c_{1}+2 n, 2 \lambda+2 n, \mid r \\
c_{1}^{\prime}+2 n,
\end{array} \right\rvert\, \frac{z-1}{z-1}\right] \tag{9}
\end{align*}
$$

(ii) In (8), taking $\rho=1$, replacing x by x / c_{1}, letting $c_{1} \rightarrow \infty$ and employing Rainville ${ }^{4}$ formulae, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}(n+1)_{n}}{\left(c_{1}^{\prime}\right)_{2_{n}}} L_{2 n}^{c_{1}^{\prime}-1}(x) \cdot 2^{n}=\left(1-\frac{c_{1}^{\prime}}{2}-\lambda\right) \quad(-x z) \operatorname{cosp}\left(\frac{c_{1}^{\prime}}{2}\right. \\
& \tag{10}\\
& \quad \times \sum_{n=0}^{\infty} \frac{x z-2}{\infty} \frac{(\lambda)_{n}}{n!\left(c_{1}^{\prime}\right)_{2 n}}\left(\frac{x}{z-1}\right)^{n} M_{k, \mu}\left(\frac{x z}{z-1}\right)
\end{align*}
$$

where

$$
k=\frac{c_{1}^{\prime}}{2}-2 \lambda-n, \mu=\frac{c_{1}^{\prime}-1}{2}+n .
$$

(B) In (6) setting $p=q=r=s=0, p=1, \sigma=2, u=w+1$ and $o_{1}^{\prime}=w$, we obtain a result involving Appell function ${ }^{1} F_{1}$ as

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} F_{1}\left(c_{1},-n,-n: c_{1}^{\prime}, x, y\right) \cdot z^{n} \\
& =(1-z) \sum_{n=0}^{\infty} \frac{(\lambda)_{n}\left(c_{1}\right)_{2 n}}{n!\left(c_{1}^{\prime}\right)_{2 n}}\left(\frac{x y z}{(1-z)^{2}}\right]^{n} \times \\
& \times F_{1}\left(c_{1}+2 n, \lambda+n, \lambda+n ; c_{1}^{\prime}+2 n, \frac{x z}{z-1}, \frac{y z}{z-1}\right) \tag{11}
\end{align*}
$$

In (11) replacing y by x and employing the formula ${ }^{1}$

$$
F_{1}\left(\alpha, \beta, \beta^{1} ; \nu, x, x\right)={ }_{2} F_{1}\binom{\alpha, \beta+\beta^{1}-\mid x}{\nu}
$$

we again arrive at (8), with $\rho=1$.
(C) In (6) substituting $p=r=0, q=s=\sigma=\rho=1, u=w+1$ and $c_{1}^{\prime}=w$, we obtain a known result ${ }^{5}$.
(D) Taking $p=r=s=0, q=\rho=\sigma=1, u=w+1$ and $c_{1}^{\prime}=w$ in (7), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} F_{2}\left(c_{1},-n,-n ; b_{1}, 1-\lambda-n ; x, y\right) \cdot z^{n} \\
& =(1-z)^{-\lambda} \sum_{n=0}^{\infty} \frac{\left(c_{1}\right)_{2 n}}{\left(b_{1}\right)_{n} n!}(-x y z)^{n} \sum_{r, s=0}^{\infty} \frac{\left(c_{1}+2 n\right)_{r}+s(\lambda)_{r}}{\left(b_{1}+n\right)_{r} r!s!}\left(\frac{x z}{z-1}\right)^{r}(y z)^{s}
\end{aligned}
$$

Summing the series of s on right hand side and employing the definition of Horn's ${ }^{6}$ function H_{3}, we have an interesting result

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{(\lambda)_{n}}{n!} F_{2}\left(c_{1},-n,-n ; b_{1}, 1-\lambda-n: x, y\right) . z^{n}=(1-z)^{-\lambda}(1-y z) \times^{c_{1}} \\
\quad \times H_{3}\left(c_{1}, \lambda ; b_{1} ; \frac{-x y z}{(1-y z)^{2}} \cdot \frac{x z}{(z-1)(1-y z)}\right) \tag{12}
\end{array}
$$

Substituting $y=0$ in (12), we have a known resulib.

ACKNOWLEDGEMENTS

I take this opportunity of expressing my gratitude to Dr. V. M. Bhise of G. S. Institute of Technology and Science, Indore for his kind help in the preparation of this paper. My雨anks are also due to Dr. S. M. Das Gupta, Birector, G. S. 1. T. S., frdore for providing facilities for conducting work.

REEERENCES

1. Apphls, P., et Kampé de Fériet, J., "Fonctions hypergeometriques et hyperspheriques" (Pagis) Gauthier Villars) 1926, pp. 150, 155; 14, 23 (25).
2. Srivastava, H.M., Mathematics of Computation 23 (1068), 309.
3. Srivastava, H.M., Proc. Camb. Philos. Soc., 62 (1966), 763.
4. Rainville, E.D., "Special Functions", (Macmillān \& Co., New Ycrk), 1967, pp. 22, 69(4); 127, 200(1).
5. Spivastava, H.M., Proc. Camks Philos. Sce.; 65 \{1969); 679.
6. Erdelyi, A, "Higher Transcendental Functions," Vol. I, (1953), p. 225; (15), 85.
