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Small transverse symmetrical vibrations of a thin elastic plate submitted to Jacobi type pressure
distribution have been described. The expressions for digplacement and velocity are obtained
in terms of Horn’s function whereas for the central particle these entities are expressed in terms .
of Bessel functions. Numerical results are obtained for a particular-case. ’ .

Sneddon? has considered the elastic response of a large thin plate due to a Gaussian
. pressure distribution- varying with time, and Mitra® has discussed the elastic response
due to an impulsive parabolic pressure confined to a finite region. In this paper, we
capsider a pressure distribution represented by a Jacobi polynemial. The physical im-
portance and behaviour of a Jacobi type pressure distribution is discussed. The - tech-
nique of integral transform is employed to study the problem. Numerical results are
given for a particular case. :

Jacobi polynomial of degree n and order «, B has already been deﬁhqd" as

‘ —n, 14+at+B4+n; . o
(a;ﬁ) 1 " 7 ’
Py ($)=(—%g)—“2[’11‘[ , 1""’”‘

I4aj 3
Jacobi polynomials form an orthogonal set over the interval (—1,1)with respect to

] a = N
the weight funchion (1 —=) (1 + x)ﬂ for all values of « and B> —1. Gegenbauer,
TUltraspherical, Tchebicheff and Legendre polynomials are the special cases of Jacobi
polynomials, Again any function™ which is bounded and has a finite number of
maxima and minima can be represented by a series of Jacobi polynomials. Hence by
introducing Jacebi polynomials an'investigation of elastic response due to an impulsive
force of general nature is possible, : -

: ".‘NOTATIONS o
2 (r,t) = 24 ph¥(t —4) f (r), Intensity of the symmetrical acting force.
2h = Thickness of the plate.~ ’

—~

P == Density of the.material of the plate. ~  ~ . , G
o, B = Poisson’s ratio and Young’s modulus of the ma:teridl' of the plate. g
A = 'Constant. ) 5 -

w (r,8) = Displacement of the central surface z =.0 of the plate. -

B R PY T =) . L -
Xv(f) . == Hankel transform of order o of the furctions, J

§ () = Dirac’s delta function.
, : , , 1nmy -
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THE BEHAVIOUR OFj'(r)

} The, type of pressure distribution considered here is one in whmh the radlal depen-
dence of the applied force is of the form - :

o= (5)“(‘1_§)ﬁ 2P (1-22), |
) gy [T ]

=0, (r>a); Reoc>——1ReB>-~1 (D)

“This type of pressure distribution is of a very general oharaeter and of great physical
interest. We shall discuss a partmular case for n = 1.

Tet n = 1 then

f(r)='(%)a(1~§Z)ﬁ[1+«~<«+ﬁ+z>—g]/; @

f(r): 0, When r=a, »_—_ _(_&%}l_—)_z_)

It should be noted that f(r) increases as 7. decreases for any partlcula,r value of o ;
and

We shall have

e hen 0 = T @+ 1) )

f\_(r) -+ ve | when /r</a\/._._..~__-(a,+ﬁ+2) ‘ o
o - @+ 1) f R
ve whena ‘———-—(m+ﬁ+2)<r<a'l
) ",

" \
~-l
§-n ‘e\ ',o
A :
of — .
b + 42 3 a
af
»

Fig. 1—Behaviour of f () when a = 0. ) Fig. 2-—Behaviour of f (r) when o = 1.
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SNt B -
" and Cfm=1, “ whenn =10, =0, B=0,

The physical significance of the negative sign of f(r) implies that it is acting in ﬁv L
opposite direction. Thus by this type of representation it is possible to discuss the vibrgss -
tion of a plate subjected to the simultaneous action. of the force acting in two opposite
directions in different parts of the plate. The behaviour of f@)yfora = 1;0=0, 1;
8= 0,71, 2, 3 and for different values of r 1 shown in Fig, 1 and 2. - R

SOLUTION OF THE PROBLEM

- Hwe suppose that the intensity of the transverse force applied to the plateis z (7, t)=
- 24 ph3 (¢ —1,) f(r), the fundamental differential equation of the vibrations of & thin 4
* elastic plate will be of the §orm . T . _

2, 1.3\ -, 2% : | |

 where the 'symi)ols‘have their usual meanings,

The boundary conditions are;

w],.:a =0 . e
- (6)
w
;t Fe—g = 0. )
Applying the Hankel transform of ath order in“(4) we get '
: Bt = e—wF@®) ©
where 7 () is Hankel transform of f (r) which is given by
N & T R )
=T T 41 (%)
Rea>—1, Ref>—~1.

‘The solution of (6) satisfying conditions (5) is
% =0, t<ty,

Sl argdaqt
- bnlaf-lgbts . \
' t>t, Rea>—1,Ref>—1 (8)

T orpionsr (0€) S BE (),
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¢ Toppiong (@) T, (r8) sinbe (¢ —t) d¢,

¢>-to~, Rea>—1,Ref>—1 e

and

w =Cyp j “+B+2W+l (Gg) de (frg) cos bfz (t “"‘to)df ,
2 o Reﬁ>“1 o 0

Using Luke’s? result: to evaluate (9) and(10) and ‘ohen appdymg transformatton g%n
in Rainville? and Bhonsle 85 result we get

w =g In[ 6 gy ot B2 425 ;,méiB“ wﬁ/B)']'
t>t0,Reoc>~—l Re,B>-1 n>0, (11)
w = Il);R[ ol 5&2(%-{-1 oc+ﬁ+2n+2 1;7a?/B, w?/B)] ‘ _

t>tp Rea>—1, Rof>—1 n>—1, (12)

ATB+n4am+te .
P(ac+B+2n+ 2) B , B =-4b (t——- to) .

where, D, =

MOTION OF TH:E CEN;.[‘RAL*?ARTICLE S
Let r tends to Zero in (9) and (10), we geb

_3_2 J
fﬁ ‘ Ju+ﬂ+2n+1(a§) sin bEx(t—ty)d¢, (13)

= O, J’ 2 Ja+ﬁ+2n+1 (af) cos. b§2 (t — to) dé

'3* t>to,Reoc>—-1 Re,3>—1 (14)
Now using Luke’s? and Slater s“, ‘we geti .-
I‘(”-—'%) azen X
w = g - .

N (28— D (—a—B— 2 S g | .
<2 Tt 52+ 2 Taing (H2D)-sin [§1§+(n+m)f],
t>to,_Reoc>~—1 Reﬂ>__1 n>0. (1)
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(2n+1)m (_-.o;._.,g)m ‘ )
" ZO m! (a4 B+ 2n - 2jm Jn-l—m—i-a} (a2/2B) 008 [2B+(”+m+1)2 ] .
M= P
‘ t>f«0,R006>~—-1 Re B> -¢-1 n>—1, ;(1:
_ A (=1 2" (@2B)2T (B+n+]1) ’
where SO Gn— P(“+ﬁ+2%+2) )

<

" DISCUSSION

; Here we shall’ dlscuss the motion.of the plate due to a partmular type of pressure
dlstnbutlon which is-obtained by taking

Case 1+ ' M=O,B=»‘h"=k1‘;' - ‘ ‘
Here we have ) =( 1— ‘2‘2) ( 1= "{{2‘) ) o amn
. | g [ il
Lw=—pr m'Bm2F1 . 2 ] sin (m+172, {18)
] m=0 - . . _ N 1'2 - » o -
Aagly2m -—-m,;—m, . ’
w =2 Z 4mIBtm 2~ 1 [ 7":":’ I 5” 42 J ~C68~ (m+ 2’)‘ ’ (19)
m=0 ) ’ 7’
Case 2 : R 0&;%:;0,‘ B=n=17r=na ‘ - oo -

L . o 5/2",.’3':; I P
7 Herewehave w=— m‘R ng 5,5 ’04“_-_;)] (20)

L -3ewid2A

2 4 6 R
Fig. 3—Displacsment eurve for contral partiele. “Fig. 4—Velocity ourve for central particle.
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Fig. 5—Displacement versus time ?urve. Fig. 6—Velocity versus time cufve;
’ 5/2, 3,2;
_ Aot SO PN : v )
w= 'v1‘2BzR 3F3( 1’5’5;_?'%)] K (21)
Case 8 : a=0,B=n=17r=0, o
Here we have from (15) and (16) ,
Agd (7 \12 , 3 )
W= — g (1_9—) [ J1j3 (02/2B) cos (a2/2B) + 5 J3/2(a2[2B) sin (a2/2B) —
— 5~ a2 (a*/2B) cos (a3[2B) — 1/35 Jy (a*/2B) sin (a2/2B)] @)
. . da (m\b 3 - o
w=— —\g J3y2 (a2[2B) cos (a2/2B) - 5 J5/2(a?/2B) sin (a2/2B) (23)

Numerical values of w and w are plotted in Case 3 as shown in Fig 3-6.

CONCLUSION

We observe from Fig. 5 that their is a rapid fall in displacement with the increase
of time upto first six seconds after which the fall is gradual tending towards zero with
increase in time.

From velocity/time curve (Fig. 6), we observe that their is a medium increase in
veloeity with increase in time in first ten seconds. At this instant (i.e.t = 10 sees) the
velocity is maximum. After it, their is a rapid fall in it with increase in time,

Comparing Fig. 5and 6 we find that for the first ten seconds displacement decreases
~ and velocity increases after which both start decreasing. ‘
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