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Some-recurrenae formulae for the G-functfon of two variable6 havo bee11 obtained after 
establishing some derivatives. 

, Agarwal1 and S h a d  defined the G-fi~nction of two variables in the form, of M e a -  
Barnes tS.pe integra which has been denoted by Bajpai3 as 

, 

The contour L1 is in the s-plane and runa'from - ice to + ice with loops if necassary, to 
ensure that the poles of r (hj  s), j=l, 2, . . . . . . , m1 lie on the right and the poles of 
r ( 1  -a j$s ) , j=1 ,2 ,  ......, 9 ~ l a n d ~ ( l - - e j + s - + t ) , j = 1 , 2  ,......, n30ntheleft of 
the c0ntour.t S milarly the contour L, is in the t-plane and runs from -im to + b with 
loops if necessary, to ensure that the poles o' r (aj -t), j= 1, 2,. . . . . , mi die on the 
right ,,and the poles of r (l--cj + t), j= I, 2, . . . . . . , n, and F (1 -- ej + s + t ) ,  j=l, 
2,. . . . . . , n3 lie on the left of the contour, .provided that 
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the integral converges if 

The right hand side of (1) shall, hence-forth be denoted by G , whenever there [f I 
is no chance of misunderstanding and is the required G-funqtion of two variables. The 
symbol (a,) ptands for al, a,, . :. . . . . . . . . ., a, throughout this paper. Certain recurrence 
relations for G-function of two variables have already been obtained by the authofl as 
particular cases of finite series. 

I , 

Similar resdts hold for y - "[s:] G 
a Y 

Let us establish the following formulae: 

- 

x h  1, a2,*-. ,afi ;(cpJ 1 
!Ih (bq,) ; (&,I 

(fd J 
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Proof: To prove (2), expressing the G-function -on the left hand side as 
Mellin-Barnes type integral ( I ) ,  changing tbe . order 'of integration and differentiation, 
we have 

- - 

But s r(1- a, + s) [(l --: al ,+ S )  + (a1 - l ) ]  r ( l  - ar + s)  

Ushg (7), (6) becomes , 

n r ( l  - ej + s + t )  [ r ( 2  - a, f s)  + (q - 1) r ( 1 -  a,  + s)]  she yht 
j= 1 

X pa 95 d-3 dt. n r ( e j  - s - t )  n r(i - f j  + s + t )  
j=n,+ 1 j=1 

Now uaipg ( l ) ,  the formula (2 )  is proved. 

Prooeeding similarly we can prove (3), (4) and (5). 

, Subtracting (2) from (3), (4) and (5), we get, respectiveli: 



I 

A aimilar result holds for (a,, - el) 6" 
I[;: I - . 

A similar d t  60h 10r-(d, - 4 + 1 )  Q - [ " ~  ] 
yh - 

-. 

A similer. result holds for (hS - c, + 1) G [;: I 



- n 

A similar r d t  holds for ( c ,  - 4 - 1) G :[ $ ] . 

(a,, -a  - 1) [;I = G 

- - 
A S i m h  wwlt holb for ( c ~  - dq, - 

d 

Subtracting (4) from (B), we get 
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-4 similar result holds for (dl -4,) G [ $ I * -  
Beoauae of the symmetry in parameters of the G-function of two variables, the resulte 

obtained above can be written in various other forms. , 

P A R T I C U L A R  CASES 

Putting h = 1, 1 -a, = Y1 ; we get the known results1 from (2) and (9). 

Putting m2 = q, = 1, la2 = la3 = p2 = p3 = q3 = 0 and making use of the formulas, 
viz. 

we get the known, results5 from (2), (8) and (9). 
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