SOME RECURRENCE FORMULAE FOR G-FUNCTION OF TWO VARLABLESA. ${ }_{\text {. }}$,

H. C. Gulati

Govt. College, Mandsaur (M.P.)

Some recurrence formulae for the G-function of two variables have been obtained after establishing some derivatives.

Agarwal ${ }^{1}$ and Sharma ${ }^{2}$ defined the G-function of two variables in the form of MellinBarnes type integra which has been denoted by Bajpai ${ }^{3}$ as

$$
\begin{equation*}
\times \frac{x^{s} y^{t}}{\prod_{j=n_{8}+1}^{p_{3}} \Gamma\left(e_{j}-s-t\right) \prod_{j=1}^{q_{3}} \Gamma\left(1-f_{j}+s+t\right)} d s d t \tag{1}
\end{equation*}
$$

The contour L_{1} is in the s-plane and runs from -ion to $+i \infty$ with loops if necessary, to ensure that the poles of $\Gamma\left(b_{j}-s\right), j=1,2, \ldots \ldots, m_{1}$ lie on the right and the poles of $\Gamma\left(1-a_{j}+s\right), j=1,2, \ldots \ldots, n_{1}$ and $\Gamma\left(1-e_{j}+s+t\right), j=1,2, \ldots \ldots, n_{3}$ on the left of the contour. S milarly the contour L_{2} is in the t-plane and runs from -ioo to $+i \infty$ with loops if necessary, to ensure that the poles o $\Gamma\left(d_{j}-t\right), j=1,2, \ldots \ldots, m_{2}$ die on the right and the poles of $\Gamma\left(1-c_{j}+t\right), j=1,2, \ldots \ldots, n_{2}$ and $\Gamma\left(1-e_{j}+s+t\right), j=1$, $2, \ldots \ldots, n_{3}$ lie on the left of the contour, provided that

$$
0 \leqslant m_{1} \leqslant q_{1}, 0 \leqslant m_{2} \leqslant q_{2}, 0 \leqslant n_{1} \leqslant p_{1}, 0 \leqslant r_{2} \leqslant p_{2}, 0<n_{3} \leqslant p_{3} ;
$$

the integral converges if
$\left(p_{3}+q_{3}+p_{1}+q_{1}\right)<2\left(m_{1}+n_{1}+n_{3}\right) ;\left(p_{3}+q_{3}+p_{2}+q_{9}\right)<2\left(m_{2}+n_{2}+n_{3}\right) ;$
$|\arg x|<\left[m_{1}+n_{1}+n_{3}-\frac{1}{2}\left(p_{3}+q_{3}+p_{1}+q_{1}\right)\right] \pi$,
$|\arg y|<\left[m_{2}+n_{2}+n_{3}-\frac{1}{2}\left(p_{3}+q_{3}+p_{2}+q_{2}\right)\right] \pi$.
The right hand side of (1) shall, hence-forth be denoted by $G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]$, whenever there is no chance of misunderstanding and is the required G-function of two variables. The symbol $\left(a_{p}\right)$ stands for $a_{1}, a_{2}, \ldots \ldots \ldots \ldots, a_{p}$ throughout this paper. Certain recurrence relations for G-function of two variables have already been obtained by the author ${ }^{4}$ as particular cases of finite series.

Let us establish the following formulae:

$$
x \frac{\partial}{\hat{c} x} \boldsymbol{G}\left[\begin{array}{l}
x^{h} \tag{2}\\
y^{h}
\end{array}\right]=h G\left[\begin{array}{l}
\left.x^{h} \left\lvert\, \begin{array}{l}
-\begin{array}{l}
a_{1}-1, a_{2}, \ldots, a_{p_{1}} ;\left(c_{p_{2}}\right) \\
\left(e_{r_{3}}\right)
\end{array} \\
y^{h} \\
\begin{array}{l}
\left(b_{q_{1}}\right) ;\left(d q_{2}\right) \\
\left(f_{g}\right)
\end{array}
\end{array}\right.\right]+h\left(a_{1}-1\right) G\left[\begin{array}{l}
x^{h} \\
y^{h}
\end{array}\right]
\end{array}\right]
$$

$x \frac{\partial}{\partial x} G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]=h b_{1} G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]-h G\left[\begin{array}{l|l}x^{h} & \begin{array}{l}\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\ \left(e_{p_{3}}\right)\end{array} \\ y^{h} & b_{1}+1, b_{2}, \ldots, b_{1} ;\left(d q_{2}\right) \\ \left(f_{f_{3}}\right)\end{array}\right]$
$x \frac{\partial}{\partial x} G \cdot\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]=h\left(a_{p_{1}}-1\right) G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]-h G\left\{\begin{array}{l}x^{h}\left\{\begin{array}{l}a_{1}, \ldots, a_{p_{1}-1}, a_{p_{1}}-1 ;\left(c_{p_{2}}\right) \\ y^{h}\left(\begin{array}{l}\left(p_{p_{3}}\right) \\ \left(b_{q_{1}}\right) ;\left(d q_{2}\right) \\ \left(f q_{3}\right)\end{array}\right.\end{array}\right\}, ~\end{array}\right.$
$x \frac{\partial}{\partial x} G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]=h b q_{1} G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]+\hbar G$

$$
\left\{\begin{array}{l|l}
x^{h} & \begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
y^{h}
\end{array} \tag{5}\\
\begin{array}{l}
\left.p_{p_{3}}\right) \\
b_{1}, \ldots, b_{q_{1}-1}, b_{q_{1}}+1 ;\left(d q_{2}\right) \\
\left(f q_{3}\right)
\end{array}
\end{array}\right\}
$$

Similar results hold for $y \frac{\partial}{\partial y} G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]$.

Proof: To prove (2), expressing the G-function on the left hand side as Mellin-Barnes type integral (1), changing the order of integration and differentiation, we have

$$
\begin{align*}
& \times \frac{\prod_{j=1}^{n_{3}} \Gamma\left(1-e_{j}+s+t\right) s x^{h s} y^{h t}}{\prod_{j=n_{3}+1}^{p_{3}} \Gamma\left(e_{j}-s-t\right) \prod_{j=1}^{q_{s}} \Gamma\left(1-f_{j}+s+t\right)} d s d t . \tag{6}
\end{align*}
$$

But $\quad s \Gamma\left(1-a_{1}+s\right)=\left[\left(1-a_{1}+s\right)+\left(a_{1}-1\right)\right] \Gamma\left(1-a_{1}+s\right)$

$$
\begin{equation*}
=\Gamma\left(2-a_{1}+s\right)+\left(a_{1}-1\right) \Gamma\left(1-a_{1}+s\right) \tag{7}
\end{equation*}
$$

Using (7), (6) becomes

$$
\begin{aligned}
& \times \frac{\prod_{j=1}^{n_{s}} \Gamma\left(1-e_{j}+s+t\right)\left[\Gamma\left(2-a_{1}+s\right)+\left(a_{1}-1\right) \Gamma\left(1-a_{1}+s\right)\right] x^{h s} y^{h t}}{\prod_{j=n_{3}+1}^{p_{s}} \Gamma\left(e_{j}-s-t \prod_{j=1}^{q_{3}} \Gamma\left(1-f_{j}+s+t\right)\right.} d s d t .
\end{aligned}
$$

Now using (1), the formula (2) is proved.
Proceeding similarly we can prove (3), (4) and (5).
Subtracting (2) from (3), (4) and (5), we get, respectively:

$$
\begin{align*}
& \left(a_{F_{1}}-a_{1}\right) G\left[\begin{array}{l}
x^{h} \\
y^{k}
\end{array}\right]=G\left[\begin{array}{l}
x^{n}\left[\begin{array}{l}
a_{1}, \ldots, a_{p_{1}-1}, a_{p_{1}-1} ;\left(c_{p_{2}}\right) \\
\left(e_{p_{2}}\right) \\
y^{k} \\
\left(b_{q_{1}}\right) ;\left(d_{q_{2}}\right) \\
\left(f q_{2}\right)
\end{array}\right]+.
\end{array}\right] \\
& +G\left[\begin{array}{ll}
x^{h} & \begin{array}{l}
a_{1}-1, a_{2}, \ldots, a_{p_{1}} ;\left(c_{p_{v}}\right) \\
\left(e_{p_{2}}\right) \\
y^{h} \\
\left(q_{q_{1}}\right) \\
\left(f q_{2}\right)
\end{array}
\end{array}\right] \tag{8}
\end{align*}
$$

A similar result holds for $\left(o_{p_{1}}-c_{1}\right) G\left[\begin{array}{l}x^{\boldsymbol{A}} \\ y^{\boldsymbol{K}}\end{array}\right]$

$$
\begin{align*}
& \left(b_{1}-a_{1}+1\right) G\left[\begin{array}{l}
x^{k} \\
y^{\mathrm{L}}
\end{array}\right]=G\left[\begin{array}{l}
x^{\mathrm{L}}\left[\begin{array}{l}
a_{1}-1, a_{2}, \ldots, a_{p_{1}} ;\left(c_{p_{2}}\right) \\
y^{\mathrm{B}} \\
\left(e_{\left.p_{2}\right)}\right. \\
\left(b_{q_{1}}\right) ;\left(d_{q_{3}}\right) \\
\left(f f_{2_{3}}\right)
\end{array}\right.
\end{array}\right]+ \\
& +G\left\{\begin{array}{l}
\left.x^{n} \left\lvert\, \begin{array}{l}
\left(\begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{z}}\right) \\
\left(e_{p_{z}}\right) \\
1+b_{1}, b_{2}, \ldots, b q_{1} ;\left(d q_{q_{2}}\right) \\
\left(f q_{2}\right)
\end{array}\right.
\end{array}\right.\right\}, ~
\end{array}\right\} \tag{9}
\end{align*}
$$

A similar result holds for $\left(d_{1}-c_{1}+1\right) G \cdot\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]$.

$$
\begin{align*}
& \left(b_{q_{1}}-a_{1}+1\right) \cdot G\left[\begin{array}{c}
x^{h} \\
y^{h}
\end{array}\right]=G\left[\begin{array}{l}
x^{h}\left\{\begin{array}{l}
a_{1}-1, a_{2}, \ldots, a_{p_{1}} ;\left(c_{p_{z}}\right) \\
\left(e_{p_{z}}\right) \\
y^{h}\left(b_{q_{1}}\right) ;\left(d_{q_{2}}\right) \\
\left(f q_{v_{2}}\right)
\end{array}\right.
\end{array}\right] \\
& -G\left\{\begin{array}{l|l}
x^{h} & \begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
\left.y_{p_{3}}\right) \\
y_{1}, \ldots, b_{q_{1}-1}, b_{q_{1}}+1 ;\left(d q_{2}\right) \\
\left(f q_{2}\right)
\end{array}
\end{array}\right\} \tag{10}
\end{align*}
$$

A similar result holds for $\left(d q_{2}-c_{1}+1\right) G\left[\begin{array}{l}x^{h} \\ y^{k}\end{array}\right]$

Subtracting (3) from (4) and (5), we get, respectively:

A similar result holds for $\left(c_{p_{2}}-d_{1}-1\right) G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]$

A Similar result holds for ($c_{p_{3}}-d q_{2}-1$) $G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]$
Subtracting (4) from (5), we get

A similar result holds for $\left(d_{1}-d_{q_{2}}\right) G\left[\begin{array}{l}x^{h} \\ y^{h}\end{array}\right]$.
Because of the symmetry in parameters of the G-function of two variables, the results obtained above can be written in various other forms.

PARTICULAR CASES

Putting $h=1,1-a_{1}=\gamma_{1}$; we get the known results ${ }^{1}$ from (2) and (9).
Putting $m_{2}=q_{2}=1, n_{2}=n_{3}=p_{2}=p_{3}{ }^{\prime \prime}=q_{3}=0$ and making use of the formula ${ }^{3}$, viz.

$$
\underset{(p, 0), 0 ;(q, 1), 0}{(m, 1) ;(n, 0), 0}\left[\begin{array}{l|l}
x & \underline{\left(a_{p}\right) ;} \tag{14}\\
y & \underline{\left(b_{q}\right) ; 0}
\end{array}\right]=e^{-y} G_{p, q}^{m, n}\left\{\begin{array}{l|l}
x & \left(a_{p}\right) \\
\left(b_{q}\right)
\end{array}\right]
$$

we get the known results ${ }^{5}$ from (2), (8) and (9).

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr. S. D. Bajpai of Regional Engineering College, Kurukshetra for his guidance in the preparation of this paper. My thanks are also due to the Principal Dr. D. S. Joshi, for the facilities he provided to me. I am thankful to the refree for his valuable suggestions.

REFERENCES

1. Agarwal, R. P., Proc. Nat. Inst. Sci., India, 31A, 6 (1965), 536.
2. Sharma, B. L., Ann. Soc. Sci., Bruxelles Ser I, 79, 1 (1965).
3. Bajpar, S. D., Some Results Involving G-funotion of Two Variables. (Communicated for publication).
4. Gulati, H. C., Finite Series for G-function of Two Variables. (Communicated for publication).
5. Erdelyi, A., "Higher Transcendental Functions". Vol. I (MacGraw-Hill), 1953, p. 209.
