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Free convection flow up a verticalinfinite plate subjected to a periodic suction is discussed when
the plate temperature oscillates with respect to time over a constant. mean. In particular, the
response of the mean velocity and temperature profiles to the fluctuating components of the
suction velocity and the plate temperatureis analysed. For small amplitudes, the mean skin-
friction increases with the frequency while the mean heat transfer at the plate is independent of
it but varies linearly as the product of the amplitudes. For Prandtl number P=1, solutions gre
also presented when the suction velocity is any arbitrary function of time provided it changes
slowly. - - ’ '

Unsteady free convection flow from an infinite vertical plate has been discussed by
several authors, Illingworth!, Rao?, Nanda & Sharma® and Dilip Singh® have used
the concept of similarity while Menold & Yang® and Goldstein & Briggs® have applied
Laplace transform technique to study this problem for various initial and boundary condi-
tions. . /

In the present paper, the effect of time-oscillating suction on the free convection past -
a vertical flat plate is analysed when the plate temperature oscillates in time over-a cons-
tant mean. A Fourier expansion method is used to obtain an infinite set of coupled equations
for the velocity and temperature functions, in which the coupling parameter is the non-
dimensional amplitude § of the unsteady component of suction. Because of this coupling,
the mean velocity and temperature distributions are altered by all higher harmonic terms.
To solve this set of equations, the functions are expanded in powers of (8 <& 1). - Itisfound
that the mean profiles are affected by terms of O(8). The temperature fluctuations affect
only the odd harmonies whereas the fluctuations in the suction velocity affect all the
harmonics related to the mean profiles. The mean skin-friction increases with frequency to
its asymptotic value of P-1, P being the Prandtl number, but decreases rapidly as
the value of P increases . The mean heat transfer upto 0:8?) is unaffected by the frequency
but depends on the product of the amplitudes of fluctuating components. Solutions are
also obtained for the general case when the suction velocity varies slowly with respect to
time and is continuously differentiable but otherwise arbitrary.

BASIC EQUATIONS

We consider the flow of a viscous and incompressible fluid along a vertical porous -
plate of infinite extent. The x-axis is taken along the plate and the y-axis normal to
it. Since the plate is infinite all quantities are functions of y and ¢ only. The equations
expressing conservation of mass, momentum and energy for the laminar free convection
are ‘ ] »
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where u, v are the velocity components, T is the fluid temperature and », «, g and 8 res-
pectively denote the kinematic viscosity, thermal diffusivity, acceleration due to grav1ty
and thermal coefficient of volume expansion. In accord with the usual practice in the
case of free-convection problems, density has been considered a variable only in forming
the buoyancy term g B (T— T'» ) per unit mass. Viscous dissipation and wm:k done agamst‘

the gravity field are ignored.
We , get from (1 _ ;
v=v(t)~~—%[1+A8(e“°‘+e*“°‘)] , As<l , (5)

which represents a steady suetion with superimposed weak-fluctuating component. Wlth
this, (2) and (4) become ,
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where 8 = (T — Tw) | (To— Tw ), Tw bemg the mean temperature of the plat and

T the ambient temperature. We take the plate temperature to be Twy + B (Tw — Tw)

(¢iwt 4~ e—iot ), which consists of a basic steady distribution with a time-varying:

quantity B (Tw— Tow) (efwé + ¢—twl ) B being a positive constant :
The appropnate boundary conditions are

y=0: wu=0, 8=1+B (ot e—iot), l
Ly > 0 u—>0, 8-> 0 : : J- .

The method of solution is similar to the one adopted by Kelly?, who has mvest1-
gated the flow over a plate with periodic suctmn

FOURIER SERIES SOLUTIONS AND RESULTS
Equatlon (3). glves the pressure dlstrlbutlon as
é il b o e
P"'%:P?/'Uo'g{ v + e , (9)

" po being the pressure at the plate.
To solve (6) to (8), following Kelly?, we assume soluﬁions in the form
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Substituting the above series into " (6) and (7) and equatmg terms of power ‘0’ @t and
e—iwt , we get in the non-dlmensmnai form

2 ' K
L d"‘“ 54 (—@— = d¢")+o =0,
1 @, - doy - o by Y _ ,‘
p dif dg " (_dT T ) 0. 13-
L ¢” -+ d"‘l‘; —ink$, + 8 4 (‘““1 + d‘ﬁ”j“l,)y +8,=0 ., 0.1, (14)
N Ty dn: PR
1 dzen do den—-l d0n+1 e S \
Pt on,,+sA( + dn)—"’”/]’ (15)
“wh o _% g i
ere n= - - by = 1 ‘
U being a”characteristic velocity such that _ o :
vgﬁ‘(lTw——-Too)[I‘}"vof: .o / .
P = vjo is the Prandt] number .
and A = vo[v? is fohgf; frequency parametér.” -
The boundary conditions become S ‘
#0) = $ile0) =0, §FO 1
B(0) = 1, Byc0) = 0 ; 01<oo)—B Oyw) =0 ;. - (16)
00) = Bi(e0) = 0, k>2 f" SRR )

From (12) to (15) we find that the mean ﬂow and the mean tempera,ture are
affected by the oscillations through ¢; and 8, and theéir conjugates and consequently
through \all the hlgher harmonic terms. Such distortion is usually associated with non-
linear type of equations. Here the distortion occurs in a linear problem and is'due to the

tinie-dependent suction which causes the equatlon to have a variable coefficient. Distor-
tlon of this type would not occur if the suction were constant.

In order to solve the infinite set of coupled differential equations,- 5 must be restricted
in some manner. For § & 1, the. equatlons are weakly coupled and followmg Kelly?,
we expand ¢, and 6, as .
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Substituting the above series’ into (12) to (15} and comparing coeficients of like
powers of 3 , we obtain the follqwing set. Qf coupled equations for various ¢ and 0,.;;1 Gy
' o0’ + oo =8 ,» 1. B
I oy )
O + P 0o =0 B e

¢’10” + ¢10/ . 'I:A ¢10 | = -:' ai?! / ,q .
6, + POy —iAPo; =0, ]
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bu’ + b —iAdu = — 4 Gu + du) — O 1(
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$o” + bor’ = —4 (‘f"m' + ;ﬁ'w)—. Bt , }’ e L

(23)
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with thé boundary conditions

- _(24)5

$i(0) = dy(0) =0 , 30,520 , |
O(0) = 1, Ofo0) =0 ; 04(0) = B, b)) = 05 > (25) /

6u(O0) = bu(e) =0, k=2, 120
"The dashes now denote differentiation with respect to 7.

- Bquations (19) to (24) have been solved_,subieog to (25) but in- ‘ordel;:\ to V;a“énsel"‘ve «
space, they are not presented here. The solutions for the mean profiles to C0(3?)  may
be - expressed . as o - . . . e T 3 ;

v

4

M) g o) b8 b0 + B ) . ~(26)
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Fig. 1—Functions which modity the mean velocity profile,  (P=0:72)."

‘v"C 1 X N "n

Flg 2—Functions which modlfy the mean veloclty
profile. l/\-_ 5.

and -

(A n) = 000(1\ )+ 3, (A, m) +

R ! (@)

It is easily seen from the differential equa-
tions .and the boundary conditions that if
the plate was to be kept at a constant
temperature (i.e., B = 0), g1 = 901 =0
and presumably, doj = 005 = 0, 7 being
odd. Tt follows that the functions op and
8ok, k being even, are unaffected by the tem-

'perature ﬁuctuatlons of the plate.

The velocity and temperature functions
which affect the mean flow and temperature
are displayed in Fig.1to4 for 4 = B =

s A= 0'5,5,60and P = 072 1,S5.
Frpm Fig. 1 and 3 we find -that $ge and %
are of the same order as ¢g. and 6 res-

- pectively for smaller frequencies and of
lesser . order for ‘higher frequencies. ‘This -

_suggests rapid convergence of the series for ¢,

and 6, for higher frequencies and that their
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Fig. 3—Functions which mod:fy the mean temyera. Fig, 4—Functions which modrfy tfio mean
ture distribution, (P=0-72) temperature digtribution, (A=5).

expansions as given by (17) and (18) may not be valid for 8 -~ 1 ‘in the case of
low fréquéncies. The mean flow and temperature nearer to the wall ‘only respond to
higher frequencies. The Prandtl number has the effect of increasing the disturbance in the
mean temperature of the fluid and at the same time suppressing the region of distur-
bance closer to the wall.

The mean skin-friction on the plate is given by

=i _% M LA 1 ﬁﬂ_) ‘ :
n=w(Z). o =sun (R,
In the non-dimensional form it is obtained as

24
PUv = P T Tighgp

i P 4 A
hl+"7‘2=‘§_'[1+( + A)]

Table ‘1 gives the values of the skin-friction coefficient for § = 0- 1, 0-3, 05 and -
A — B = 1. We find that the dimensionless coefficient of skin-friction increases with fre~
quency to its asymptotic value P~1 but decreases rapidly as P increases. Also we note
that the skin-friction coefficient decreases as the amplitude of the fluctuating component
of suction velocity increases.

{ Bhs + A—Iyﬁ 52 } L+ 0 (8, (28)

The local mean heat transfer at the plate is given by
qd—K(ay)y"Oﬂ_K v drr =’0’

P

or ' -

Fo oy =T+ 2488 4 0f), (29)
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- 02 072 . % 10 . .50 10

) 05 45854 . 1:2030 . 0-8536 0-1646 0:0821
01 5-0 4-8598 1-3165 - 0:9392 0°1762 0- 0864
50-0 4:9563  1-3654 ©0-9801 0-1912 0-0939

Y05 3:8200 . 09012 . 0-6262 0-1166 0-0581
03 © 50 45822 1-1765 0-8230 0-1358 0-0626
50-0 4-8660 1:3186 . 09405 01741 0-0823

oo 05 3-1429 0-6930 0-4859 00991 00499
05 5-0 4-3086 1-0430 . 07140 0-1050 0-0486
50-0 47769 1-2720 0-9011 0-1576 00714

% 50000 ©1-3889 ~1‘000‘0 0+2000 0-1000

K being the thermal conductlvxty Hence the. heat transfer upto O(8?) is 1ndepen~
dent of frequency and varies hnearly as the prociuct of the amphtudes

ARBITRARY SUCTION VELOOITY

We assume now that the suction velocity — o (¢) * [ v () > 0] varies s]owly W1th
respect to time but is otherwise arbitrary.. Also let the plate be maintained at a cons-
tant temperature. We take

v =Usmn, (30)

( )y 2V nd Uisa chasractenstm velocity such that vg B (T — T')[U v2=1

where 7 = =

Substituting (30) into (2) and (4), we get R ey

v op  vo 2 g, 3

r - oo 3 1
T T T e T e 3
v a9 vi o9 3 1 g% ,

S g0 3 _ , 32
# g TTE T g T o P o (82)

| where the dot denotes differentiation with respect to t, and 6 = (TmTw) / ‘(Tw ~Ts)
Following Kelly’, we expand ¢ as :

B 1) = dal) + 5 i) + {T” Bilo) + S bl e (39

and similarly in the case of 6(y, t). Substit\iting these two series into equations (31)
~and (32), and comparing like terms, we realise a set of linear differential equations fof
varous ¢; and ;. Their solutions subject to ~

$i(0) = ¢i{0) =0 , =0 ,
00(0)*1 o.,(oo)_o Gk(O)_Ok(oo)—O k=l

(34)



; The wall skm-fnctlon in this ease is given by

are “as follows @ o o -

and the heat-transfer rate at the, plate is obtamed as

JOE- Y 9:'1,5 -

b =men, ) Lo
oy — e | g (35)
| bo(n) = €7 Sf e et i |
b =Gt sRERen, ] "
am=t@ntWer, )
‘362(’7)"“”%(84’7+42"7 +9")3+7)4) en }
Oyl) = — 3 (120 + 62 4 ) 1
oln) = 24(1454 7+ 132 7 + 188 ,,a + 3@1?4 + 3,15) e,

oy

Oy(n) = s- (64 + 329* + 8 + n“) e,

3y v . 1420 6122
o3 + 05 /+ ‘/06’

r=pUi)'[1+

‘K ’UV(Tw,""Tw) [ 1 + v ,v +
v’ -,'03 -

Thus, & ‘suction velocity which i incredses th}i tlme inereases the skm-fmc’mon but decreases '
the hea‘o transfer compa,red to their quaSL steady values T o
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