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Considering the geometry of triply orthogonal spatial curves of congruences in Euclidean space
E3, formed by a vortexline and its principal normal and binormal, various kinematic and kinetic
properties of an inviscid diabatic steady gas flow are examined. Extending the same technique
complex-lamellar flows are studied.

The non-linear character of differential equations governing fluid dynamic problems
has presented considerable difficulties to find out exact possible flows, Consequently many
interesting devices (inverse, semi-inverse and superposability) have been introduced. The
introduction of the Geometric theory of surfaces and curves in fluid flow theory is also
one such device, which presents the flow possible. In this paper we discuss the geometric
properties of steady diabatic complex-lamellar gas flows, correlating the geometry of
vortexline. It is assumed that the fluid is non-viscous and subject to no extraneous forces.
~ Complex-lamellar flows are characterized by the fact that there exists a family of co of sur-

faces orthogonal to the streamlines!. Each surface is a Beltrami surface.

Defining complex-lamellar velocity field it is observed that the streamlines and the -
vortexlines intersect orthogonally and each Beltrami surface contains the vortexline.
From the geometry of Beltrami surface it is seen that the velocity vector field lies in the
normal plane to a vortexline. Further the velocity shall be parallel to the normal to a
Beltrami surface if the vortexlines are geodesics. The necessary geometric conditions
to be satisfied by the vortexline geometric parameters are established and we observe
that the resolved parts of velocity along a principal normal and binormal to a vortexline
cannot be uniform simultaneously. The magnitude of the vorticity shall be uniform

-along a vortexline if the normal congruences are minimal and the converse is also
true. Transformingthe equation of continuity, the curvature distribution of a vortexline
is studied. Decomposing the momentum equation it is proved that the total pressure
remains uniform along a vortexline. The normals to the isobars cannot be parallel to the

" streamlines, whether the fluid is adiabatic or diabatic. The basic integrability conditions
for a diabatic complex-lamellar steady flows are obtained in geometric parameters
of the vortexline. ’ ‘ :

The adiabatic phenomena can be discussed as a special case of this investigation.y

BASIC EQUATIONS

The basic equations governing steady diabatic, inviscid gas flow in the absence of
extraneous forces, in Crocco’s velocity vector field are given below in the usual notation? :
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In addition to these we add the Croceo’s vorticity equation for adiabatic gas flow :

- N :
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where W 9 y, e, Vi, Cp, T, T, S, and W are reduced velocity vector, the heat content the
. adiabatic exponent, the total pressure, the limiting velocity, the stagnatlon enthalpy,
the temperature, the specific entropy and the magnitude of the Crocco’s veloclty vector
field respectively.

COMPLEX-LAMELLAR FLOWS

Complex-lamellar flows are characterized by the fact that there exists a family of
oo surfaces? orthogona,l to the streamlines 3 and each surface is a Beltrami surface,

The velocity vector of this field can be expressed as :

- o .
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where o and ¢ are scalar point functions and ¢ (r) = constant surface of the Beltrami
surface. For this field the condition for the streamlines to be 1ntersected normally by a
one parameter family of surfaces, leads

, = '
WCuer=0 or V. Caurl W =0 _ (7

This shows that the streamlines and vortexlines intersect orthogonally and the
Beltrami surfaces contain the vortexlines for a complex-lamellar flow.

- Using the geometry of the vortexlines established earlier?, the velocity vector W
can be expressed as

'->-—>
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where W, and W, are the components of the velocity along a principal normal and a
binormal to a vortexline.
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Operating Curl on (8) and equating to ( ¢ () where { is the magnitude of the
N

vorticity and ¢ is the unit tangent vector toa vortexliné, we obtain_

_dm W,
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where (—(% % ;;%) (k, k', k") and (=, o', ") are the directional derivatives,

the curvatures, and the torsions of the vortexlines, the prmclpal normals and thelr
binormals respectively. - 3

‘ Equatlons (9) to (11) constitute the basic conditions to be satisfied by a complex-
lamellar veloeity vector field, in the language of vortexliné geometry. Also from (9) we
observe that the components of the velocity along a binormal and principal normal

N -
-cannot be uniform simultaneously along » and b respectlyely.

Now making use of solenoidal properby of the vorticity together with - (9) to
(11), we obtain
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This can also be written as - )
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From this it is evident that the normal [ congruences are minimal if the magnitude of
the vorticity is uniform along an individual vortexline, and the converse is also true.

Making use of (8) in (1), we can decompose the continuity equation into intrinsic
form as , S
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This expresses the curvature distribution of a vortexline flow, for a complex-lamellar
velocity field. If the vortexline i geodesic on a Beltrami surface (14) simplifies to
1

d¢ I | q prats
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From this we observe that the vortexlines are straight if the flow is’ adnibstlc and
velocity uniform along the principal normal to a vortexline.
- = - e )
Forming the scalar products of (2)by ¢, = and b successively we obtain the
following
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From (16) we see that.the total pressure remains uniform along a vortexline. Also
eliminating { from (17) and (18) we obtain :

— Zyqpe we i
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We conclude from (18) and (19) that the streamlines and the vortexlines intersect
orthogonally along an individual isobars if the flow is adiabatic.

S
W.VUn = (19)

-Also eliminating ¢ the heat content from (14) and (18) we ubi;ain
>
2pe yW?2 £
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Tt is clear that the normals to isobar and the streamlines cannot be parallel for
rotatwm’ diabatic or adiabatic steady gas ﬁow

Also from (19) and (20) we obtain

—3
Ve A W=
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i — 0= tan " (/) (21)

where n=0, 1, 2,..,, and 0 is the inclination of the streamline ‘with a normal to
- ap isobar
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Using (4) in (2) and decomposi,ng‘into intrinsic form we obtain
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These give the variations of pressure along a vortexline, principal normal and binormal,
The adiabatic case can be discussed as a special case. R
Operating Curl on (2) and using (8) we decompose as & ,

d (o—glla) | 2 (Pt gl | .
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These constitute the basic 1ntegrab1hty condltlons for diabatic complex-lamellar

steady gas flow in intrinsic form.
Using (3)) in (5) we obtain 7
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These give the variation of the specific entropy along a vortexline and its principal

normal and binormal,
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