PIEZOMETRIO EFFICIENCY IN AN ORTHODOX GUN

R. N. Bhattacharyya
Maharaja Manindra Chandra College, Calcutta

(Received 28 April 1970)

Abstract

It has been shown that the muzzle velocity and the piezometric efficiency have greater values in asse of a suitable moderated charge than in case of a single charge. The suitable moderated charge should consist of two components such that the pressure driving the shot remains absolutely constant throughout the period when the second component burns, the constant pressure being equal to the pressure at the burnt of the first component.

In a recent paper Ray ${ }^{1}$ discussed the possibility of getting high piezometric efficiency in an orthodox gun by the use of a moderated charge. In fact in that paper it was demonstrated that if a moderated charge of two components burns in an orthodox gun the pressure during the period when the second component burns can be kept constant by a suitable choice of the size and shape of the second component of the moderated charge. Constancy of pressure gives a higher value to the piezometric efficiency but the amount of increment was not discussed in that paper. Moreover it will be of interest to know whether this increment in piezometric efficiency is associated with the increase of muzzle velocity. In the present paper it has been tried to throw some light on these points. In fact it has been shown that if firstly piezometric efficiency and muzzle velocity is calculated with a charge of amount C, a size D / β and shape 0 and secondly piezometric efficiency and muzzle velocity is calculated with a moderated charge of twe components having amounts C_{1} and C_{2} so that $C=C_{1}+C_{2}$, the first component having size $D_{1} / \beta_{1}=D / \beta$ and shape $\theta_{1}=\theta$ (same as the first case) and giving a constant pressure in the second stage of burning (by Ray's method). Then we have observed that piezometric efficiency and muzzle velocity are both greater in the second case. For simplicity in discussion we adopt an isothermal model although Ray considered his problem in the general non-isothermal model. Also Kapur ${ }^{3,4}$ discussed the theory of moderated charges in the general non-isothermal model.

BALLISTIC EQUATIONS FOR THE SINGLE CHARGE
The covolume term is entirely neglected and the kinetic energy term in the energy equation is neglected during the burning of the charge. The shot start pressure, is taken to be zero. Then the equations are

$$
\begin{gather*}
F C Z=p\left(K_{0}+A x-\frac{C}{\delta}\right) \tag{1}\\
\omega_{1} v \frac{d v}{d x}=A p \tag{2}\\
Z=(1-f)(1+\theta f) \tag{3}\\
D \frac{d f}{d t}=-\beta p \tag{4}
\end{gather*}
$$

Making the following transformation

$$
\xi=1+\frac{x}{l}
$$

$$
\begin{gathered}
A l=K_{0}-\frac{C}{\delta} \\
\eta=\frac{v A D}{F C \beta} \\
\zeta=\frac{p A l}{F C} \text { and } M=\frac{A^{2} D^{2}}{F C \beta^{2} \omega_{1}}
\end{gathered}
$$

The above equations can be made dimensionless and the reduced equations are,

$$
\begin{gather*}
Z=\zeta \xi \tag{5}\\
M \zeta=\eta \frac{d \eta}{d \xi} \tag{6}\\
Z=(1-f)(1+\theta f) \tag{7}\\
\zeta=-\eta \frac{d f}{d \xi} \tag{8}
\end{gather*}
$$

and
The above equations were solved by the method of Crow given in H.M.S.O ${ }^{2}$. The solution gives,

$$
\begin{gather*}
f=1-\frac{\eta}{M} \tag{9}\\
\xi=\left[\frac{(1+\theta)}{(1+\theta f)}\right]^{N} \tag{10}
\end{gather*}
$$

where

$$
N=\frac{M}{\theta}
$$

and

$$
\begin{equation*}
\zeta=\frac{(1+\theta)^{2}\left(\xi^{1 / N}-1\right)}{\theta \zeta^{1+2 / N}} \tag{11}
\end{equation*}
$$

This expression for ζ can be written as a function of η by (9) and (10). Again the maximum pressure occurs when

$$
\begin{equation*}
\eta=\frac{(1+\theta)}{\left(1+\frac{2 \theta}{M}\right)} \tag{12}
\end{equation*}
$$

and the condition for the true maximum is $M>(1-\theta)$ and the maximum pressure will occur before all burnt of the charge. If $M \leqslant(1-\theta)$ the maximum pressure will occur at all burnt.

Then the, expression for the maximum pressure in non-dimensional form is given by

$$
\begin{equation*}
\zeta_{\max }=\frac{(1+\theta)^{2}(N+1)^{N+1}}{\theta(N+2)^{N+2}} \tag{13}
\end{equation*}
$$

From the given transformation we have

$$
\begin{equation*}
p_{\max }=\frac{F C}{A l} \frac{(1+\theta)^{2}(N+1)^{N+1}}{\theta(N+2)^{N+2}-}, \quad M>(1-\theta) \tag{14}
\end{equation*}
$$

Again (13) for $\boldsymbol{\theta}=0$ reduces to

$$
\left.p_{\text {max }}\right|_{\theta=0}=\frac{F C}{A l} \frac{1}{e^{M}},(M>1)
$$

Also

$$
\begin{equation*}
p_{\text {max }}=\frac{F C}{A l} \frac{1}{(1+\theta)^{N}},(M, 1-\theta) \tag{15}
\end{equation*}
$$

Since the value of ζ at $f=0$, i.e. at all burnt is

$$
\zeta_{B}=\frac{1}{(1+\theta)^{N}}
$$

The value of η at all burnt is given by

$$
\begin{equation*}
\eta_{B}=M \text { and } v_{B}=\frac{F C \beta}{A D} M \tag{16}
\end{equation*}
$$

The value of ξ at all burnt is given by
$\xi_{B}=(1+\theta)^{N}$ and consequently the distance travelled by the shot at all burnt is

$$
\begin{equation*}
x_{B}=l\left[(1+\theta)^{N}-1\right] \tag{17}
\end{equation*}
$$

Now there are two possibilities:
(i) the shot nray leave the muzzle before all kurnt of the charge, i.e. $\frac{x_{B}}{d}>1$ or
(ii) the shot may leave the muzzle after all burnt of the charge, i.e. $\frac{x_{B}}{d}<1, d$ being the length of the gun.
Again aftar all burnt the gay expands adiabatically and the corresponding equations are

$$
\begin{align*}
& \omega v \frac{d v}{d x}=A p \tag{18}\\
& p \nabla^{\gamma}=\text { constant }
\end{align*}
$$

where V represents the vrlume.
(19) can be written as,
or

$$
\begin{gather*}
p A^{\chi}(x+l)^{\gamma}=p_{B} A^{\gamma}\left(x_{B}+l\right)^{\gamma} \\
p=p_{B}\left(\frac{x_{B}+l}{x+l}\right)^{\gamma} \tag{20}
\end{gather*}
$$

From (18) and (20) we have,

$$
v \frac{d v}{d x}=\frac{A}{\omega} p_{B}\left(x_{B}+l\right)^{\gamma} \frac{1}{(x+l)^{\gamma}}
$$

Integrating one gets

$$
v^{2}=v_{B}^{2}+\frac{2 A}{\omega} \frac{p_{B}}{1-\gamma}\left(x_{B}+l\right)^{\gamma}\left[(x+l)^{1-\gamma}-\left(x_{B}+l\right)^{1-\gamma}\right]
$$

Since $x=x_{B}$ when $v=v_{B}$
Putting of the value of x_{B}, v_{B} and p_{B} from (15) to (17) in the ab. ve formula for v^{2}, we have

$$
\begin{aligned}
& v^{2}=\frac{F^{2} C^{2} \beta^{2}}{A^{2} D^{2}} M^{2}+\frac{2 A}{\omega(1-\gamma)} \frac{F C}{A l(1+\theta)^{N}}\left\{l(1+\theta)^{N}\right\}^{\gamma} \times \\
& \\
&
\end{aligned}
$$

If V be the muzzle velocity of the shot we have

$$
\begin{gathered}
\nabla^{2}=\frac{F^{2} C^{2} \beta^{2}}{A^{2} D^{2}} M^{2}+\frac{2 F C}{\omega(1-\gamma)\left\{l(1+\theta)^{N}\right\}^{1-\gamma}} \times \\
\therefore \times\left[(d+l)^{1-\gamma}-\left\{l(1+\theta)^{N}\right\}^{1-\gamma}\right]
\end{gathered}
$$

The simplified equation for the muzzle velocity is given by

$$
\begin{equation*}
\nabla^{2}=\frac{F C}{\omega_{i}}\left[M+\frac{2}{1-\gamma}\left\{\left(\frac{1+\frac{d}{l}}{(1+\theta)^{N}}\right)^{1-\gamma}-1\right\}\right] \tag{21}
\end{equation*}
$$

If \bar{p} be the mean pressure which applied to the shot base for the total shot travel would give the observed muzzle velocity, then the corresponding equation connecting \bar{p} is
or

$$
\begin{align*}
& \frac{1}{2} \omega \omega \nabla^{2}=A d \bar{p} \\
& \bar{p}=\frac{\omega V^{2}}{2 A d} \tag{22}
\end{align*}
$$

putting the value of V^{2} from (21) we have

$$
\begin{equation*}
\bar{p}=\frac{F C}{2 A d}\left[M+\frac{2}{1-\gamma}\left\{M+\frac{2}{1-\gamma}\left\{\left(\frac{1+\frac{d}{l}}{(1+\theta)^{N}}\right)^{1-\gamma}-1\right\}\right]\right. \tag{23}
\end{equation*}
$$

The piezometric efficiency is defined to be the ratio of the mean pressure to the maximum pressure.
Hence from (23) and (14) when .

$$
M>(1-\theta)
$$

Piezometric effioienoy $=\frac{\bar{p}}{p_{\text {max }}}$

$$
\begin{array}{r}
=\frac{l}{2 d} \frac{\theta(N+2)^{N+2}}{(1+\theta)^{2}(N+1)^{N+1}}\left[M+\frac{2}{1-\gamma}\left\{\left(\frac{1+\frac{d}{l}}{(1+\theta)^{N}}\right)^{1-\gamma}-1\right\}\right] \\
\quad \text { for }\left(\frac{x_{B}}{d}<1\right) \tag{24}
\end{array}
$$

and when $M \leqslant(1-\theta)$ from (23) and (15)
Piezometric efficiency $=\frac{l}{2 d}(1+\theta)^{N}\left[M+\frac{2}{1-\gamma}\left\{\binom{1+\frac{d}{l}}{(1+\theta)^{N}}^{1-\gamma}-1\right\}\right]$
Also the muzzle velocity in non-dimensional form is denoted by η_{m} which from (21) and the transformation formula reduces to

$$
\begin{align*}
& \eta_{m}{ }^{2}=M\left[M+\frac{2}{1-\gamma}\left\{\left(\frac{1+\frac{\mathrm{d}}{l}}{(1+\theta)^{N}}\right)^{1-\gamma}-1\right\}\right] \tag{26}\\
& \text { for }\left(\frac{x_{B}}{d}<1\right)
\end{align*}
$$

All these formulae for piezometric efficiency and muzzle velocity will hold good if $\frac{x_{B}}{d}<1$ but if $\frac{x_{B}}{d}>1$, i.e. the shot leaves the muzzle beforeall burnt of the charge, then from (10) for $x=d$ the value of f is to be calculated and then $\eta_{m}=M(1-f)$ gives the corresponding muzzle velocity. The mean pressure is then determined. For the calculation of maximum pressure in this case, the cases we have considered that f corresponding to ejection of the shot is less than f corresponding to $p_{m a x}$. under the condition $M>(1-\theta)$ and therefore the maximum pressure was calculated by (14). In ather cases the value of maximum pressure can be obtained numerically from the ballistic equations. The piezometric efficiency can be calculated from the definition. The numerical values of the muzzle velocity and piezometric efficiency are given for $M=1$ and $M=2$ for different values of l / d and $\theta_{\text {. }}$

MODERATED CHARGE OF TWO COMPONENTS

Ballistic Equations when the First Component Burns
Under the sa me conditions as in the single charge, the equations become

$$
\begin{gather*}
F_{1} C_{1} Z_{1}=p\left[K_{0}+A x-\frac{C_{1}}{\delta_{1}}-\frac{C_{2}}{\delta_{2}}\right] \tag{27}\\
\omega_{1} v \frac{d v}{d x}=A p \tag{28}\\
D_{1} \frac{d f_{1}}{d t}=-\beta_{1} p \tag{29}\\
Z_{1}=\left(1-f_{1}\right)\left(1+\theta_{1} f_{1}\right) \tag{30}
\end{gather*}
$$

These equations are to be solved with the initial conditions

$$
x=0, v=0, \quad p=0 \text { àt } f_{1}=1 \text { i.e. } Z_{1}=0
$$

We make the following usual substitution

$$
\begin{aligned}
\xi & =1+\frac{x}{l_{1}} \\
A l_{1} & =K_{0}-\frac{C_{1}}{\delta_{1}}-\frac{C_{2}}{\delta_{2}} \\
\eta & =v \frac{A D_{1}}{F_{1} C_{1} \beta_{1}} \\
\zeta & =p \frac{A l_{1}}{F_{1} C_{1}} \\
M_{1} & =\frac{A^{2} D_{1}{ }^{2}}{F_{1} C_{1} \beta_{1}{ }^{2} \omega_{1}}
\end{aligned}
$$

and
The above equations reduce to

$$
\left.\begin{array}{rl}
Z_{1} & =\zeta \xi \\
M_{1} \zeta & =\eta \frac{d \eta}{d \xi} \\
\zeta & =-\eta \frac{d f_{i}}{d \xi} \tag{31}\\
Z_{1} & =\left(1-f_{1}\right)\left(1+\theta_{1} f_{1}\right)
\end{array}\right\}
$$

Solving the above equations as in the case of single charge we find that the maximum pressture occurs when

$$
\eta_{1}=\frac{N_{1}\left(1+\theta_{1}\right)}{N_{1}+2} \quad \text { when } N_{1}=\frac{M_{1}}{\theta_{1}}
$$

and the condition for true maximum is

$$
M_{1}>\left(1-\theta_{1}\right)
$$

If $M_{1} \leqslant\left(1-\theta_{1}\right)$, the maximum pressure occurs at all burnt of the component charge. Then the value of the maximum pressure is given by

$$
\begin{equation*}
p_{\text {mas }}=\frac{F_{1} C_{1}}{A l_{1}} \frac{\left(1+\theta_{1}\right)^{2}\left(N_{1}+1\right)^{N_{1}+1}}{\theta_{1}\left(N_{1}+2\right)^{W_{1}+2}} \tag{32}
\end{equation*}
$$

The value of ζ at $f_{1}=0$, i.e. at burnt of the first component charge is given $\zeta_{\beta_{1}}$ where

$$
\begin{equation*}
\zeta_{B 1}=\frac{1}{\left(1+\theta_{1}\right)^{N_{1}}} \tag{33}
\end{equation*}
$$

Hence the value of the pressure p at $f_{1}=0$ is $p_{B 1}$ where

$$
\begin{equation*}
p_{B 1}=\frac{F_{1} C_{1}}{A l_{1}} \frac{1}{\left(1+\theta_{1}\right)^{N_{1}}} \tag{34}
\end{equation*}
$$

Also $x_{B 1}$ the value of x where the first component charge burns out and $v_{B 1}$ the corresponding value of the velocity, then

$$
\begin{align*}
& \overrightarrow{v_{B 1}}=\frac{F_{1} C_{1} \beta_{1}}{A D_{1}} M_{1} \tag{35}\\
& x_{B 1}=l_{1}\left[\left(1+\theta_{1}\right)^{N}-1\right] \tag{36}
\end{align*}
$$

Ballistic Equations when the Seaond Oomponent Burns
The equations are:

$$
\begin{gather*}
F_{1} C_{1}+F_{2} C_{2} Z_{2}=p\left[K_{0}+A x-\frac{C_{1}}{\delta_{1}}-\frac{C_{2}}{\delta_{2}}\right] \tag{37}\\
\omega_{1} \frac{d v}{d t}=A p \tag{38}\\
D_{2} \frac{d f_{2}}{d t}=-\beta_{2} p \tag{39}\\
Z_{2}=\left(1-f_{2}\right)\left(1+\theta_{2} f_{2}\right) \tag{40}
\end{gather*}
$$

We are to obtain the solution of these equations with initial conditions $x=x_{B 1}, v=v_{B 1}$ at $f_{2}=1 . \quad x_{B 1}, v_{B 1}, p_{B 1}$ are the value. of x, v, p when the first component just burns out.

Let us assume that the solution of the above equation is passible with

$$
\begin{equation*}
p=p_{B 1} \tag{41}
\end{equation*}
$$

and seek conditions so that the solytions may give $x=x_{B 1}, v=v_{B 1}$ at $f_{2}=1$ and the systems of (37) to (40) may remain consistent for the solution $p=p_{B 1}$.

From (38) and (39)
or

$$
\begin{equation*}
\frac{d}{d f_{2}}\left[\frac{d f_{2}}{d t}, \frac{d x}{d f_{2}}\right]=-\frac{A D_{2}}{\beta_{2} \omega_{1}} \tag{42}
\end{equation*}
$$

which by (39) and (41) reduces to

$$
\begin{equation*}
\frac{A^{2} x}{d f_{2}^{2}}=\frac{A D_{2}^{2}}{\beta_{2}{ }^{2} \omega_{1} p_{B 1}} \tag{43}
\end{equation*}
$$

From (42)

$$
\begin{equation*}
v=\frac{F_{1} C_{1} \beta_{1}}{A D_{1}} M_{1}+\frac{A D_{2}}{\beta_{2} \omega_{1}}\left(1-f_{2}\right) \tag{44}
\end{equation*}
$$

since

$$
v=v_{B 1} \text { at } f_{2}=1
$$

Then the value of v at $f_{2}=0$ when the second component charge burns out

$$
\begin{equation*}
v_{B 2}=\frac{F_{1} C_{1} \beta_{1}}{A D_{1}} M_{1}+\frac{A D_{2}}{\beta_{2} \omega_{1}} \tag{45}
\end{equation*}
$$

From (37) and (40)

$$
\begin{equation*}
F_{1} C_{1}+F_{2} C_{2}\left(1-f_{2}\right)\left(1+\theta_{2}-f_{2}\right)=p_{B 1}\left\{K_{1}+A x-\frac{C_{1}}{\delta_{1}}-\frac{C_{2}}{\delta_{2}}\right\} \tag{46}
\end{equation*}
$$

Now we impose the condition that (37) gives $x=x_{B 1}, v=v_{B 1}$ at $f_{2}=1$ and further (37) is consistent with (43).

Now $x=x_{B 1}$ will satisfy (46) if

$$
\begin{equation*}
F_{1} C_{1}=p_{B 1}\left\{K_{0}+A x_{B 1}-\frac{C_{1}}{\delta_{1}}-\frac{C_{2}}{\delta_{2}}\right\} \tag{47}
\end{equation*}
$$

which is true for (47) is obtained from (27) by considering burnt values.
Now differentiating (37) and (40) w. r. t. f_{2}
and

$$
F_{2} C_{2} \frac{d Z_{2}}{d f_{2}}=p_{B 1} A \frac{\frac{d x}{d t}}{\frac{d f_{2}}{d t}}
$$

$$
\frac{d Z_{2}}{d f_{2}}=\left(1-f_{2}\right) \dot{\theta}_{2}-\left(1+\theta_{2} f_{2}\right)
$$

and these equation with (39) yield

$$
F_{2} C_{2}\left[\left(1-f_{2}\right) \theta_{2}-\left(1+\theta_{2} f_{2}\right)\right]=-\frac{A D_{2}}{\beta_{2}} \frac{d x}{d t}
$$

Now $v=v_{B 1}$ and $f_{2}=1$ will satisfy the above equation if

$$
F_{2} C_{2}\left(1+\theta_{2}\right)=\frac{A D_{2}}{\beta_{2}} v_{B 1}
$$

Putting the value of $v_{B 1}$ the above equation reduces to

$$
\begin{equation*}
\left(1+\theta_{2}\right)=\frac{F_{1} C_{1}}{F_{2} C_{2}} \frac{D_{2}}{D_{1}} \frac{\beta_{1}}{\beta_{2}} M_{1} \tag{48}
\end{equation*}
$$

Now to satisfy the condition that (37) and (41) will be consistent; we differentiate (37) twice w. r. t. f_{2}.

We have,

$$
\begin{gathered}
F_{2} C_{2} \frac{d^{2} Z}{d f_{2}{ }^{2}}=A p_{B 1} \frac{d^{2} x}{d f_{2}{ }^{2}} \\
F_{2} C_{2} \frac{d^{2} Z}{d f_{2}{ }^{2}}=p_{B 1} \frac{A^{2} D_{2}{ }^{2}}{\beta_{2}{ }^{2} \omega_{1} p_{B 1}} .
\end{gathered}
$$

or
Since

$$
\frac{d^{2} Z_{2}}{d f_{2}^{2}}=-2 \theta_{2}
$$

we have

$$
\begin{equation*}
2 \theta_{2}=-\frac{A^{2} D_{2}{ }^{2}}{\beta_{2}{ }^{2} \omega_{1} F_{2} C_{2}} \tag{49}
\end{equation*}
$$

The simultaneous satisfaction of the equations (48) and (49) gives the condition that $p=p_{B}$ may be a solution of the equations (37) to (40). From (49) it is evident that the second component must have progressively increasing burning surface.
Introducing the dimensionless constant,

$$
\frac{F_{2} C_{2}}{F_{1} C_{1}}=\beta_{0} \text { and } \frac{\frac{D_{2}}{\beta_{2}}}{\frac{D_{1}}{\beta_{1}}}=\alpha_{0}
$$

We have
and

$$
\left.\begin{array}{l}
1+\theta_{2}=\frac{\alpha_{0}}{\beta_{0}} M_{1} \tag{50}\\
2 \theta_{2}=-\frac{M_{1} \alpha_{0}^{2}}{\beta_{0}}
\end{array}\right\}
$$

Eliminating $\boldsymbol{\theta}_{2}$ we have,
giving

$$
\begin{gather*}
M_{1} \alpha_{0}^{2}+2 M_{1} \alpha_{0}-2 \beta_{0}=0 \\
\alpha_{0}=-1+\sqrt{1+\frac{2 \beta_{0}}{M_{1}}} \tag{51}
\end{gather*}
$$

Since α_{0} is always positive.
Now after all burnt the gas expands adiabatically and the corresponding equations are

$$
\begin{align*}
& \omega_{1} \bar{v} \frac{d v}{d x}=A p . \tag{52}\\
& p \nabla^{\gamma}=\text { constant. } \tag{53}
\end{align*}
$$

Equation (53) gives,
or

$$
\begin{gather*}
p A^{\gamma}\left(x+l_{1}\right)^{\gamma}=p_{B 1} A^{\gamma}\left(x_{B 2}+l_{1}\right)^{\gamma} \\
p=p_{B 1}\left(\frac{x_{B 2}+l_{1}}{x+l_{1}}\right)^{\gamma} \tag{54}
\end{gather*}
$$

where $x_{B 2}$ is the distance traversed by the shot at all burnt of the second component, which is to be calculated.
Now from (52) to (54)

$$
v d v=\frac{\boldsymbol{A}}{\omega_{1}} p_{B 1}\left(x_{B 2}+l_{1}\right)^{y} \frac{d x}{\left(x+l_{1}\right)^{\gamma}}
$$

Integrating with the condition that $x=x_{B 2}, v=v_{B 2}$ one gets

$$
\begin{equation*}
v^{2}=v_{B 2}{ }^{2}+\frac{2 A p_{B 1}}{\omega_{1}(1-\gamma)}\left(x_{B 2}+l_{1}\right)^{\gamma}\left[\left(x+l_{1}\right)^{1-\gamma}-\left(x_{B 2}+l_{1}\right)^{1-\gamma}\right] \tag{55}
\end{equation*}
$$

Let us calculate the shot travel when the second component burns From (44), (39) and (41) we have

$$
\frac{d x}{d f_{2}} \frac{\beta_{2} p_{B_{1}}}{D_{2}}=\frac{\dot{F}_{1} C_{1} \beta_{I}}{A D_{1}} M_{1}+\frac{A D_{2}}{\beta_{2} \omega_{1}}\left(1-f_{2}\right)
$$

Integrating with the condition that $x=x_{B 1}$ at $f_{2}=1$,

$$
\frac{\beta_{2} p_{B 1}}{D_{2}}\left[x-l_{1}\left\{\left(1+\theta_{1}\right)^{N_{1}}-1\right\}\right]=M_{1} \frac{F_{1} C_{1} \beta_{1}}{A D_{1}}\left(1-f_{2}\right)+\frac{A D_{2}}{2 \beta_{2} \omega_{1}}\left(1-f_{2}\right)^{2}
$$

Let $x=x_{B 2}$ when the second component burns out, i.e. at $f_{2}=0$, then

$$
x_{B 2}=l_{1}\left(1+\theta_{1}\right)^{N_{1}}\left[1+M_{1} \alpha_{0}+\frac{M_{1} \alpha_{0}^{2}}{2}\right]-l_{1}
$$

Let

$$
\begin{equation*}
1+M_{0} \alpha_{0}+\frac{M_{1} \alpha_{0}^{2}}{2}=M_{0} \tag{56}
\end{equation*}
$$

Then

$$
\begin{equation*}
x_{B 2}=l_{1}\left(1+\theta_{1}\right)^{N_{1}} M_{0}-l_{1} \tag{57}
\end{equation*}
$$

From (45), (55) and (57) by putting the value of $x_{B 2}$ and $v_{B 2}$ we have

$$
\begin{aligned}
& v^{2}=\left(\frac{F_{1} C_{1} \beta_{1}}{A D_{1}} M_{1}+\frac{A D_{2}}{\beta_{2} \omega_{1}}\right)^{2}+\frac{2 A}{(1-\gamma) \omega_{1}} \frac{F_{1} C_{1}}{A l_{1}} \frac{1}{\left(1+\theta_{1}\right)^{N_{1}}} l_{1}\left(1+\theta_{1}\right)^{N_{1}} M_{0} \times \\
& \times\left[\left(x+l_{1}\right)^{1-\gamma}-\left\{l_{1}\left(1+\theta_{1}\right)^{N_{1}} M_{0}\right\}^{1-\gamma}\right]
\end{aligned}
$$

If $\boldsymbol{\nabla}$ be the muzzle velocity of the shot,

$$
\begin{equation*}
\nabla^{2}=\frac{A^{2} D_{1}{ }^{2}}{\beta_{1}{ }^{2} \omega^{2}}\left[\left(1+\alpha_{0}\right)^{2}+\frac{2 M_{0}}{(1-\gamma) M_{1}}\left\{\left(\frac{1+\frac{d}{l_{1}}}{M_{0}\left(1+\theta_{1}\right)^{N_{1}}}\right)^{1-\gamma}-1\right\}\right] \tag{58}
\end{equation*}
$$

The mean pressure \bar{p} is given by $\bar{p}=\frac{\omega_{1} V^{2}}{2 A d}$

$$
=\frac{\omega_{1}}{2 A d} \frac{A^{2} D_{1}{ }^{2}}{\beta_{1}{ }^{2} \omega_{1}{ }^{2}}\left[\left(1+\alpha_{0}\right)^{2}+\frac{2 M_{0}}{\left.(1-\gamma) M_{1}\right)}\left\{\left(\frac{\left(1+\frac{d}{l_{1}}\right.}{\left(1+\theta_{1}\right)^{N_{1}} M_{0}}\right)^{1-\gamma}-1\right\}\right]
$$

Considering the expression for the maximum pressure for the two cases
(i) $M_{1}>\left(1-\theta_{1}\right)$
and
(ii) $M_{1} \leqslant\left(1-\theta_{1}\right)$
we have the expression for the piezometric efficiency of the gun.
When

$$
M_{1}>\left(1-\theta_{1}\right)
$$

Piezometric efficiency $=$

$$
\begin{array}{r}
\frac{l_{1}}{2 d} \frac{\theta_{1}\left(N_{1}+2\right)^{N_{1}+2}}{\left(1+\theta_{1}\right)^{2}\left(N_{1}+1\right)^{N_{1}+2}}\left[M_{1}\left(1+\alpha_{0}\right)^{2}+\frac{2 M_{0}}{1-\gamma}\right. \\
\left.\cdot\left\{\left(\frac{1+\frac{d}{l_{1}}}{M_{0}\left(1+\theta_{1}\right)^{N_{2}}}\right)^{1-\gamma}-1\right\}\right] \tag{59}
\end{array}
$$

for

$$
\left(\frac{x_{B 1}}{d}, \frac{x_{B 2}}{d}<1\right)
$$

$$
M_{1} \leqslant\left(1-\theta_{1}\right)
$$

Piezometric efficiency $=$
for

$$
\begin{gather*}
\frac{l_{1}}{2 d}\left(1+\theta_{1}\right)^{N_{1}}\left[M_{1}\left(1+\alpha_{0}\right)^{2}+\frac{2 M_{0}}{1-\gamma}\left\{\left(\frac{1+\frac{d}{l_{1}}}{M_{0}\left(1+\theta_{1}\right)^{N_{1}}}\right)^{1-\gamma}-1\right\}\right] \\
 \tag{60}\\
\left(\frac{x_{B 1}}{d} ; \frac{x_{B 2}}{d}<1\right)
\end{gather*}
$$

The corresponding expressions for the muzzle velocity in non dimensional form can be written as,

$$
\begin{equation*}
\eta_{m_{3}}{ }^{2}=M_{1}\left[M_{1}\left(1+\alpha_{0}\right)^{2}+\frac{2 M_{0}}{1-\gamma}\left\{\left(\frac{1+\frac{d}{l_{1}}}{M_{0}\left(1+\theta_{1}\right)^{N_{2}}}\right)^{1-\gamma}-1\right\}\right] \tag{61}
\end{equation*}
$$

Now for the moderated charge there are three possibilities:
(i) $\frac{x_{B 1}}{d}>1$, i.e. shot leaves the gun before all burnt of the first component such that the constant pressure phase has not been reached. We are not concerned with this because we are to consider the cases under constant pressure phase with the second component.
(ii) $\frac{x_{B 1}}{d}<1$ but $\frac{x_{B 2}}{d}>1$, i.e. the shot leaves the gun when the second component is burning.
(iii) $\frac{x_{B 1}}{d}<1$ and $\frac{x_{B 2}}{d}<1$, i.e. the shot leaves the gun after all burnt of the second component. We are concerned with the last two possibilities. In this case the muzzle velocity and piezometric efficiency are given by (59) to (61). For the second possibility the calculations of the muzzle velocity and piezo metric efficiency are as follows. From (46) and (50) for $x=d, f_{2}$ have been calculated and with this value of f_{2} the muzzle velocity can be calculated from (44) and in non-dimensional form it reduces to

$$
\begin{equation*}
\eta_{m 2}=M_{1}\left[1+\alpha_{0}\left(1-f_{2}\right)\right] \tag{62}
\end{equation*}
$$

The maximum pressure has been calculated on the same principle as in the case of single charge and hence the piezometric efficiency can also be calculated by deducing the mean pressure from the muzzle velocity and taking ratio of the mean pressure to the maximum pressure.

NUMERICAL CALCULATION

Now we are going to establish numerically that both the muzzle velocity and piezometric efficiency have greater values for the moderated charges. For the simplicity of calculation we have considered that the propellant for the single charge and moderated charges have the same chemical composition, i.e. $F=F_{1}=F_{2}, \delta=\delta_{1}=\delta_{2}$ and $\gamma=\gamma_{1}=\gamma_{2}$. Also we have stated that the ballistic of the single charge is equal to that of the first component, i.e. $D / \beta=D_{1} / \beta_{1}$ and $C=C_{1}+C_{2}$. Under these condition the ratio M / M_{1} reduces to C_{1} / C and we choose the value of M and C_{1} / C, the value of M_{1} has been determined. l / d and l_{1} / d are considered to be equal as we considered same gun in two cases. Also $\beta_{0}=F_{2} C_{2} / F_{1} C_{1}=\left(C / C_{1}-1\right)$. Hence when we choose $C_{1} / C, \beta$ can be found out and α_{0} is then determined by (51).

$$
\frac{l}{d}=0.5, \theta=0, M=1
$$

$$
\frac{l}{d}=0 \cdot 2, \theta=0, M=1
$$

$$
\frac{l}{d}=0 \cdot 2, \theta=1, \mathrm{M}=1
$$

Single charge
Moderated charges

M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V,	P.E.
1.709	0.4927	45	2.532	0.8354	75	$2 \cdot 135$	$0 \cdot 6776$
		50	2.503	0.8224	80	2.049	0.6500
		55	2.501	$0 \cdot 8156$	85	1.958	$0 \cdot 6015$
		58	2.443	0.8114	90	1.851	$0 \cdot 5472$
		60	2.395	$0 \cdot 7829$	95	1.784	0.5182
		65	$2 \cdot 301$	0.7429	98	1.740	0.5051
		70	$2 \cdot 236$	$0 \cdot 7100$			-

$$
\frac{1}{d}=0.1, \theta=0, M=1
$$

Single charge	Moderated charges					
M.C. P.E.	$\begin{gathered} C_{1} / C \\ (\%) \end{gathered}$	M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (O /) \end{aligned}$	M.V.	P.E.
$1.833 \quad 0.3207$	60 80	$\begin{aligned} & 2 \cdot 488 \\ & 2.181 \end{aligned}$	$\begin{aligned} & 0.8414 \\ & 0.6457 \end{aligned}$	90	2.068	0.5378
$\frac{l}{d}=0 \cdot 1, \theta=0, M=2$						
Single charge	Moderated charges					
M.V. P.E.	$\begin{aligned} & C_{1} O \\ & (\%) \end{aligned}$	M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.
$2.348 \quad 0 \cdot 7496$	90	$2 \cdot 635$	0.9295	98	2.610	0.9173

$$
\frac{l}{d}=0 \cdot 1, \theta=1, M=2
$$

Single charge		Moderated charges					
M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.
2.751	0.4483	$\begin{aligned} & 85 \\ & 87 \end{aligned}$	$\begin{aligned} & 2.870 \\ & 2.815 \end{aligned}$	$\begin{aligned} & 0 \cdot 7293 \\ & .0 \cdot 7025 \end{aligned}$	90 98	$\begin{aligned} & 2 \cdot 792 \\ & 2 \cdot 770 \end{aligned}$	$\begin{aligned} & 0.6224 \\ & 0.6223 \end{aligned}$

$$
\frac{l}{d}=0 \cdot 1, \theta=-0 \cdot 1, M=1
$$

Single charge		Moderated charges					
M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.
1.812	$0 \cdot 4709$	45	$2 \cdot 613$	0.8309	70	$2 \cdot 304$	
		50	$2 \cdot 592$	0.8135	80	$2 \cdot 144$	0.7986 0.6785
		60	2.510	0.8094	90	2.000	0.6785 0.6385
.		65	$2 \cdot 402$	0.8054	95	1.886	0.6345

$$
\frac{l}{d}=0 \cdot 1, \theta=-0 \cdot 2, M=1
$$

Single charge		Moderated charges					
M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.
1.787	$0 \cdot 4800$	80 90	1.932 1.872	0.6925 0.5430	95	1.859	
		90	1.872	. 0.5430			0.5315

74

$$
\frac{l}{d}=0.1, \theta=-0.6, M=1
$$

Single oharge	Moderated charges					
M.V. P.E.	$\begin{aligned} & 0_{1} / \sigma \\ & (\%) \end{aligned}$	M.V.	P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V.	P.E.
1.6110 .5905	98 95	1.627 1.644	0.6115 0.6400	90 87	$\begin{aligned} & 1.692 \\ & 1.712 \end{aligned}$	$\begin{aligned} & 0.6735 \\ & 0.6852 \end{aligned}$
$\frac{l}{d}=0.1, \theta=-0.8, M=1$						
Single charge	Moderated charges					
M.V. P.E.	$\begin{aligned} & C_{1} / C \\ & (\%) \end{aligned}$	M.V:	P.E.	$\begin{aligned} & C_{1} / O \\ & (\%) \end{aligned}$	M.V.	P.E.
$1.345 \quad 0.6656$	98	$\begin{aligned} & 1.316 \\ & 1.311 \end{aligned}$	$\begin{aligned} & 0.6610 \\ & 0.6750 \end{aligned}$	$\begin{aligned} & 90 \\ & 87 \end{aligned}$	$\begin{aligned} & 1.282 \\ & 1.123 \end{aligned}$	$\begin{aligned} & 0.6820 \\ & 0.6937 \end{aligned}$

ACKNOWLEDGEMENT

The author has much pleasure in expressing his gratefulness to Prof. A. Ray for the continuous interest shown by him in the preparation of this work and the benefit of discussion with him.

REFERENCES

1. Ray, Ai, Proc. Nat. Inst. Sci., India, A30 (1964), 446.
2. H.M.S.O., "Internal 'Ballistios", 1951.
3. Kapur, J. N., Proc. Nat. Inst. Sci., India, A28 (1957).
4. Kapuk, J. N., Proc. Nat. Inst. Sci., India, A24 (1958).
