FOURIER sĖRIES FOR FOX's H-FUNCTIOŃN

R. L. Taxar
College of Education, Kurukshetra

(Received 20 February 1970)
Two integrals involving Fox's H-function have been evaluated and used to establish two Fourier series for the H-function. On speoialising the parameters, the H-funotion can be reduced to Meijer G-function, Mao Robert's E-function, generalised hypergeometrio functions and many other higher transcedental functions ${ }^{1}$. The results established are of a general character.
Carison \& Greiman ${ }^{2}$ have obtained a cosine series for Gegenbauer's function. MacRobert ${ }^{3,4}$ has established a cosine and sine series for MacRobert's E-function. Jain ${ }^{5}$, Kesarwani ${ }^{6}$ and Bajpai ${ }^{-9}$ have obtained some Fourier series for Meijer's G-function. Except a few ${ }^{7,9}$ all the Fourier series for the G-function have been established following the results of MacRobert ${ }^{3,4}$. The Fourier series for H -function in this paper have been obtained with the help of a result given by Nielsen ${ }^{10}$.

The H -function introduced by Fox ${ }^{11}$ is represented and defined as follows :

$$
\left.\left.\begin{array}{rl}
H_{p, q}^{m, n} & {\left[z \left\lvert\, \begin{array}{l}
\left(a_{1}, e_{1}\right), \ldots \ldots \ldots \ldots,\left(a_{p}, e_{p}\right) \\
\left(b_{1}, f_{1}\right), \ldots
\end{array}\right.\right] \ldots \ldots,\left(b_{q}, f_{q}\right)}
\end{array}\right]\right) .
$$

where an empty product is interpreted as $1,0 \leqslant m \leqslant q, 0<n \leqslant p ; e^{\prime} s$ and f 's are all positive numbers, L is suitable contour of Barnes type such that the poles of $\Gamma\left(b_{j}-f_{j} s\right), j=1, \ldots \ldots, m$ lie on the right hand side of the contour and those of $\Gamma\left(1-a_{j}+e_{j} s\right), j=1, \ldots \ldots \ldots \ldots, n$ lie on the left hand side of the contour.

Asymptotic expansion and analytic continuation of the H -function have been discussed by Braaksma ${ }^{12}$.

Following formulae are required in the proofs :
(a) The following integrals ${ }^{10}$.

$$
\begin{equation*}
\int_{0}^{\pi}(\sin \theta)^{\rho} \cos u \theta \mathrm{~d} \theta=\frac{\pi \Gamma(1+\rho) \cos (\pi u / 2)}{2^{\delta} \Gamma\left(1+\frac{\rho+u}{2}\right) \Gamma\left(1+\frac{\rho-u}{2}\right)}, \tag{2}
\end{equation*}
$$

$$
\int_{0}^{\pi}(\sin \theta) \rho \sin u \theta d \theta=\frac{\pi \Gamma(1+\rho) \sin (\pi u / 2)}{2 \rho \Gamma\left(1+\frac{\rho+u}{2}\right) \Gamma\left(1+\frac{\rho-u}{2}\right)},
$$

where $\rho>-1$
(b) The duplication formula for the gamma-function ${ }^{13}$.

$$
\begin{equation*}
(\pi) \Gamma(2 z)=2^{(2 z-1)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{4}
\end{equation*}
$$

In what follows for sake of brevity $\left(a_{p}, e_{p}\right)$ denotes $\left(a_{1}, e_{1}\right), \ldots \ldots,\left(a_{\mu}, e_{p}\right) ; a_{p}$ stand for $a_{1}, \ldots \ldots \ldots, \ldots, a_{p}$ and the symbol $\triangle(\delta, \alpha)$ represents the set of parameters $\alpha / \delta, \frac{\alpha+1}{\delta}, \ldots \ldots, \frac{\alpha+\delta-1}{\delta}$, where δ is a positive integer.

THE INTEGRALS

The integrals to be established are :
$\int_{0}^{\pi}(\sin \theta)^{\rho} \cos u \theta H_{p, q}^{m, n}\left[z(\sin \theta){ }^{2 \delta} \left\lvert\, \begin{array}{l}\left(a_{p}, e_{p}\right) \\ \left(b_{q}, f_{q}\right)\end{array}\right.\right] d \theta$
$=(\pi)^{\frac{1}{2}} \cos \frac{\pi u}{2} H_{p+2, q+2}^{m, n+2}\left[z\left[\begin{array}{l}\left(\frac{1-\rho}{2}, \delta\right),(-\rho / 2, \delta),\left(a_{p}, e_{p}\right) \\ \left(b_{q}, f_{q}\right),\left(-\frac{\rho+u}{2}, \delta\right),\left(-\frac{\rho-u}{2}, \delta\right)\end{array}\right]\right.$
$\int_{0}^{\pi}(\sin \theta) \rho \sin u \theta \eta_{p, q}^{m, n}\left[z(\sin \theta)^{2 \delta} \left\lvert\, \begin{array}{l}\left(a_{p}, e_{p}\right) \\ \left(b_{q}, f_{q}\right)\end{array}\right.\right] d \theta$
$=(\pi)^{\frac{1}{2}} \sin \frac{\pi u}{2} H_{p+2, q+2}^{m+n+2}\left[\begin{array}{l}z\end{array} \left\lvert\, \begin{array}{l}\left(\frac{1-\rho}{2}, \delta\right),(-\rho / 2, \delta),\left(a_{p}, e_{z}\right) \\ \left(b_{q}, f_{q}\right),\left(-\frac{\rho+u}{2}, \delta\right)\end{array}\left(-\frac{\rho-u}{2}, \delta\right)\right., ~(-1)\right.$
where δ is a positive number and

$$
\sum_{j=1}^{p} e_{j}-\sum_{j=1}^{q} f_{j} \leqslant 0, \quad \sum_{j=1}^{n} e_{j}-\sum_{j=n+1}^{p} e_{j}+\sum_{j=1}^{m} f_{j}-\sum_{j=m+1}^{q} f_{j}=K>0,
$$

$$
|\arg z|<\frac{1}{2} K \pi, \operatorname{Re} 2 \delta b_{j} \mid f_{j}>1-\rho \quad(j=1, \ldots \ldots \ldots . ., m)
$$

Proof

To prove (5), expressing the H -function in the integrand as a Mellin-Barnes type integral (1) and interchanging the order of integrations, which is justified due to the absolute convergeñce of the integrals involved in the process, we have

$$
\frac{1}{2 \pi i} \int_{i} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-f_{j} s\right) \prod_{j=m+1}^{n} \Gamma\left(1-a_{j}+e_{j} s\right) z^{s}}{\prod_{j=1}^{n} \Gamma\left(1-b_{j}+f_{j} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-e_{j} s\right)} \int_{0}^{p}(\sin \theta)^{\rho+2 \delta s} \cos u \theta d \theta d s
$$

Now evaluating the inner integral with the help of (2) and using duplication formula for Gamma-function (4), we get

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\prod_{j=1}^{q} F\left(b_{j}-f_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+e_{j} s\right) \sqrt{\pi} \Gamma\left(\frac{1+\rho}{2}+\delta s\right)}^{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+f_{j} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-e_{j} s\right) \Gamma\left(1+\frac{\rho+u}{2}+\delta s\right)} \times \\
& \quad \times \frac{\Gamma(1+\rho / 2+\delta s) \cos (\pi u / 2)}{\Gamma\left(1+\frac{\rho-u}{2}+\delta s\right)} d s
\end{aligned}
$$

On applying (1), the result (5) is established.
The integral (6) is establisked on applying the same procedure and using: (3).

FOURIER SERIES

The Fourier series to be obtained are

$(\sin \theta) \curvearrowright H_{p, q}^{m, n}\left[\begin{array}{ll}(\sin \theta)^{2 \delta} & \begin{array}{l}\left(a_{p}, e_{p}\right) \\ \left(b_{q}, f_{q}\right)\end{array}\end{array}\right]$

$$
\begin{align*}
& =\frac{2}{(\pi)^{\frac{1}{2}}} \sum_{r=1}^{\infty} H_{p+2, q+2}^{m, n+2}\left\{\begin{array}{l}
p\left\{\begin{array}{l}
\left(\frac{1-p}{2}, \delta\right),(-\rho / 2, \delta),\left(a_{p}, e_{p}\right) \\
\left(b_{q}, f_{q}\right),\left(-\frac{\rho+u}{2}, \delta\right),\left(-\frac{\rho-u}{2}, \delta\right)
\end{array}\right\} \times \\
\ll \sin \frac{\pi r}{2} \sin r \theta
\end{array}\right.
\end{align*}
$$

where δ is a positive number and
$\sum_{j=1}^{p} e_{j}-\sum_{j=1}^{q} f_{j}<0, \quad \sum_{j=1}^{n} e_{j}-\sum_{j=n+1}^{p} e_{j}+\sum_{j=1}^{m} f_{j}-\sum_{j=m+1}^{q} f_{j}=K>0$,
$|\arg z| \frac{1}{2} K<\pi, \operatorname{Re} 2 \delta b_{j} / f_{j}>1-\rho(j=1, \ldots \ldots, m), \quad 0<\theta<\pi$. Proof

To establish (7), let

$$
f(\theta)=(\sin \theta)^{\rho} H_{p, q}^{m, n}\left[z(\sin \theta)^{2 \delta}\left[\begin{array}{l}
\left(a_{p}, e_{\mu}\right) \tag{9}\\
\left(b_{q},\right.
\end{array} f_{q}\right)\right]=\frac{C_{0}}{2}+\sum_{r=1}^{\infty} C_{r} \cos r \theta
$$

Equation (9) is valid since $f(\theta)$ is continuous and of bounded variation in the open interval $(0, \pi)$, when $\rho \geqslant 0$.

Multiplying both sides of (9) by $\cos (u \theta)$ and integrating with respect to θ from 0 to π, we get

$$
\begin{aligned}
& \int_{0}^{\pi}(\sin \theta)^{\rho} \cos u \theta H_{p, q}^{m, n}\left[z(\sin \theta)^{2 \delta} \left\lvert\, \begin{array}{l}
\left(a_{p}, e_{r}\right) \\
\left(b_{q}, f_{q}\right)
\end{array}\right.\right] d \theta \\
& =\frac{C_{0}}{2} \int_{0}^{\pi} \cos u \theta d \theta+\sum_{r=1}^{\infty} C_{r} \int_{0}^{\pi} \cos r \theta \cos u \theta d \theta
\end{aligned}
$$

Now using (5) and the orthogonality property of cosine functions, we have

$$
C_{u}=\frac{2}{(\pi)^{\frac{1}{2}}} \cos \frac{\pi u}{2} H_{p+2, q+2}^{m, n+2}\left\{\begin{array}{l}
\left(\frac{1-\rho}{2}, \delta\right),(-\rho / 2, \delta),\left(a_{p}, e_{p}\right) \\
\left(b_{q}, f_{q}\right),\left(-\frac{\rho+u}{2}, \delta\right),\left(-\frac{\rho-u}{2}, \delta\right) \tag{10}
\end{array}\right\}
$$

From (9) and (10), the result (7) is obtained.
To prove (8), let

$$
f(\theta)=(\sin \theta)^{\rho}{\underset{\sim}{H}}_{p, q}^{m}, n\left[z(\sin \theta)^{2 \delta} \left\lvert\, \begin{array}{l}
\left(a_{p}, e_{p}\right) \tag{11}\\
\left(b_{q}, f_{q}\right)
\end{array}\right.\right]=\sum_{r=1}^{\infty} \theta_{r} \sin r \theta
$$

Multiplying both sides of (11) by $\sin (u \quad \theta)$ and integrating with respect to θ from 0 to π then using (6) and the orthogonality property of sine functions, we obtain
$C_{u}=\frac{2}{(\pi)^{\frac{2}{2}}} \sin \frac{\pi u}{2} H_{p+2, q+2}^{m, n+2}\left[\begin{array}{l}\left(\frac{1-\rho}{2}, \delta\right),(-\rho / 2, \delta),\left(a_{k}, a_{p}\right) \\ \left(b_{q}, f_{q}\right),\left(-\frac{\rho+u}{2}, \delta\right),\left(-\frac{\rho-u}{2}, \delta\right)\end{array}\right]$

From (11) and (12), the formula (8) follows immediately.

PARTICULARCASES

$\operatorname{In}(7)$, assuming δ as a positive integer, putting $e_{j}=f_{i}=1(j=1, \ldots \ldots$, $p ; i=1, \ldots \ldots, q)$, using the formula

$$
H_{p, q}^{m, n}\left[\begin{array}{c|c}
\left(\begin{array}{c}
\left(a_{p}, 1\right) \\
\left(b_{q}, 1\right)
\end{array}\right]=G_{p, q}^{m, n}[z & \left.\begin{array}{c}
a_{p} \\
b_{i}
\end{array}\right], ~
\end{array}\right],
$$

and simplifying with the help ${ }^{1}$ of (1), (4) and (9), we get a result recently obtained by Bajpai ${ }^{9}$, viz.
$(\sin \theta)^{\rho} G_{p, \eta}^{m, n}\left[z(\sin \theta)^{2 \delta}\left[\begin{array}{l}a_{j} \\ b_{q}\end{array}\right]=\frac{1}{(\pi \delta)^{\frac{1}{2}}} G_{p+\delta, q+\delta}^{m, n+\delta}\left[\begin{array}{l}z\left(\begin{array}{l}\left.\Delta, \frac{1-\rho}{2}\right), a_{p} \\ b_{g}, \Delta(\delta,-\rho / 2)\end{array}\right]\end{array}\right]\right.$

$$
+\frac{2}{(\pi \delta)^{\frac{1}{2}}} \sum_{r=1}^{8} G_{p+2 \delta, q+2 \delta}^{m, n+2 \delta}\left(z \left\lvert\, \begin{array}{c}
\Delta(2 \delta,-\rho), a_{p} \\
b_{g}, \Delta\left(\delta,-\frac{\rho+r}{2}\right), \Delta\left(\delta,-\frac{\rho-r}{2}\right)
\end{array}\right.\right\}
$$

$$
\begin{equation*}
\times \cos \frac{\pi r}{2} \cos r \theta \tag{13}
\end{equation*}
$$

where $2(m+n)>p+q,|\arg z|<\left(m+n-\frac{1}{2} p-\frac{1}{2} q\right) \pi$,

$$
\operatorname{Re}\left(2 \delta b_{j}\right)>-\rho-1(j=1, \ldots \ldots, m), 0<\theta<\pi
$$

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr, S. D. Bajpai of Regional Engineering College, Kurukshetra for his kind help and guidance during the preparation of this paper.

REFERENCES

1. Erdmiyt. A., "Higher Transcedental Functions," Vol. 1, (MoGraw-Hill, New York), 1953.
2. Carlson, B. C. \& Gritman, W. H., Duke Math. J., 33 (1966), 41.
3. MacRobert, T. M., Math. Z., 71 (1959), 143.
4. MacRobert, T. M., Math. Z., 75 (1961), 79.
5. Jain, R. N., Math. Japan, 10 (1965),101.
6. Kesarwani, R. N., Compositio Math., 17 (1966), 149.
7. Ba.JPAI, S. D., Gaz. Mat. (Lisboa), 28 (1967), 40.
8. BAJPai, S. D., Proc. Camb., Phil.Soc., 65 (1969), 703.
9. BaJPAI, S. D., "Fourier series for G-functions". (Under communication).
10. Nielsen, N., "Handbuch der Theoric der Gamma-function", (Leipzig), 1906.
11. Fox,C., Trans. Amer. Math. Soc., 98 (1961), 395.
12. BRAAKSMA, B. L.J., Compositio Math., 15 (1963), 239.
13. Rainville, E.D., "Special Functions" (McMillan \& Co. Ltd., New York), 1967.
