FOURIER SERIES FOR FOX'S H-FUNCTION

R. L. TAXAK

College of Education, Kurukshetra

(Received 20 February 1970)

Two integrals involving Fox's H-function have been evaluated and used to establish two Fourier series for the H-function. On specialising the parameters, the H-function can be reduced to Meijer G-function, Mao Robert's E-function, generalised hypergeometric functions and many other higher transcedental functions¹. The results established are of a general character.

Carlson & Greiman² have obtained a cosine series for Gegenbauer's function. Mac-Robert^{3,4} has established a cosine and sine series for MacRobert's E-function. Jain⁵, Kesarwani⁶ and Bajpai⁷⁻⁹ have obtained some Fourier series for Meijer's G-function. Except a few^{7,9} all the Fourier series for the G-function have been established following the results of MacRobert^{3,4}. The Fourier series for H-function in this paper have been obtained with the help of a result given by Nielsen¹⁰.

The H-function introduced by Fox¹¹ is represented and defined as follows :

$$H_{p,q}^{m,n}\left[z\left|\begin{array}{c}(a_{1}, e_{1}), \ldots \ldots \dots, (a_{p}, e_{p})\\(b_{1}, f_{1}), \ldots \dots \dots, (b_{q}, f_{q})\end{array}\right]\right]$$

$$=\frac{1}{2\pi i}\int \frac{\prod_{j=1}^{m} \Gamma(b_{j}-f_{j}s) \prod_{j=1}^{n} \Gamma(1-a_{j}+e_{j}s) z^{s} ds,}{\prod_{j=1}^{q} \Gamma(1-b_{j}+f_{j}s) \prod_{j=n+1}^{p} \Gamma(a_{j}-e_{j}s)}, \quad (1)$$

where an empty product is interpreted as 1, $0 \le m \le q$, $0 \le n \le p$; e's and f's are all positive numbers, L is suitable contour of Barnes type such that the poles of $\Gamma(b_j - f_j s), j = 1, \ldots, m$ lie on the right hand side of the contour and those of $\Gamma(1 - a_j + e_j s), j = 1, \ldots, n$ lie on the left hand side of the contour.

Asymptotic expansion and analytic continuation of the H-function have been discussed by Braaksma¹².

Following formulae are required in the proofs:

(a) The following integrals¹⁰.

$$\int_{0}^{\pi} (\sin \theta)^{\rho} \cos u\theta \, \mathrm{d}\theta = \frac{\pi \Gamma (1+\rho) \cos (\pi u/2)}{2 \,\delta \Gamma \left(1+\frac{\rho+u}{2}\right) \Gamma \left(1+\frac{\rho-u}{2}\right)}, \quad (2)$$

$$\int_{0} (\sin \theta)^{\rho} \sin u \theta d \theta = \frac{\pi \Gamma (1+\rho) \sin (\pi u/2)}{2\rho \Gamma \left(1+\frac{\rho+u}{2}\right) \Gamma \left(1+\frac{\rho-u}{2}\right)}, \quad (\varepsilon)$$

where $\rho > -1$

(b) The duplication formula for the gamma-function¹³.

$$(\pi)^{\frac{1}{2}} \Gamma(2z) = \frac{2}{2} \Gamma(z) \Gamma(z + \frac{1}{2}).$$
 (4)

In what follows for sake of brevity (a_p, e_p) denotes $(a_1, e_1), \ldots, \ldots, (a_p, e_p)$; a_p stand for a_1, \ldots, a_p and the symbol \triangle (δ, α) represents the set of parameters

$$\alpha/\delta, \frac{\alpha+1}{\delta}, \ldots, \frac{\alpha+\delta-1}{\delta}$$
, where δ is a positive integer.

THE INTEGRALS

The integrals to be established are :

$$\int_{0}^{n} (\sin \theta)^{p} \cos u \theta H_{p, q}^{m, n} \left[z (\sin \theta)^{2\delta} \middle| \begin{array}{c} (a_{p}, e_{p}) \\ (b_{q}, f_{q}) \end{array} \right] d\theta$$

$$= (\pi)^{\frac{1}{2}} \cos \frac{\pi u}{2} H_{p+2, q+2}^{m, n+2} \left[z \left| \left(\frac{1-\rho}{2}, \delta \right), (-\rho/2, \delta), (a_p, e_p) \right| (b_{q_p}, f_q), \left(-\frac{\rho+u}{2}, \delta \right), \left(-\frac{\rho-u}{2}, \delta \right) \right]$$
(5)

$$\int_{0}^{\infty} (\sin \theta)^{p} \sin u\theta \ H \frac{m, n}{p, q} \left[z \ (\sin \theta)^{2\delta} \ \left| \begin{array}{c} (a_{p}, e_{p}) \\ (b_{q}, f_{q}) \end{array} \right] d\theta$$

$$= (\pi)^{\frac{1}{2}} \sin \frac{\pi u}{2} H_{p+2, q+2}^{m, n+2} \left[z \left| \begin{pmatrix} \frac{1-\rho}{2}, \delta \end{pmatrix}, (-\rho/2, \delta), (a_p, e_p) \\ (b_q, f_q), (-\frac{\rho+u}{2}, \delta), (-\frac{\rho-u}{2}, \delta) \right| \right]$$
(6)

where δ is a positive number and

$$\sum_{j=1}^{p} e_{j} - \sum_{j=1}^{q} f_{j} \leqslant 0, \quad \sum_{j=1}^{n} e_{j} - \sum_{j=n+1}^{p} e_{j} + \sum_{j=1}^{m} f_{j} - \sum_{\substack{j=n+1\\j=m+1}}^{q} f_{j} \equiv K > 0,$$

 $| \arg z | < \frac{1}{2} K \pi$, Re 2 $\delta b_j / f_j > 1 - \rho$ $(j = 1, \ldots, m).$

Proof

To prove (5), expressing the H-function in the integrand as a Mellin-Barnes type integral (1) and interchanging the order of integrations, which is justified due to the absolute convergence of the integrals involved in the process, we have

$$\frac{1}{2\pi i}\int_{L}^{m} \prod_{j=n+1}^{m} \frac{\Gamma(b_j-f_js)\prod_{j=1}^{n}\Gamma(1-a_j+e_js)z^s}{\prod_{j=n+1}^{q}\Gamma(1-b_j+f_js)\prod_{j=n+1}^{p}\Gamma(a_j-e_js)} \int_{0}^{\pi} (\sin\theta)^{p+2\delta s} \cos u\theta \, d\theta \, ds.$$

Now evaluating the inner integral with the help of (2) and using duplication formula for Gamma-function (4), we get

$$\frac{1}{2\pi i} \int_{\substack{j=1\\ Ij=m+1}}^{m} \frac{\prod \Gamma(b_j - f_j s) \prod \Gamma(1 - a_j + e_j s) \sqrt{\pi} \Gamma\left(\frac{1+\rho}{2} + \delta s\right)}{\prod \prod \Gamma(1 - b_j + f_j s) \prod \Gamma(a_j - e_j s) \Gamma\left(1 + \frac{\rho+u}{2} + \delta s\right)} \times \frac{\Gamma\left(1 + \rho/2 + \delta s\right) \cos\left(\pi u/2\right)}{\Gamma\left(1 + \frac{\rho-u}{2} + \delta s\right)} ds$$

On applying (1), the result (5) is established.

The integral (6) is established on applying the same procedure and using (3).

FOURIER SERIES

The Fourier series to be obtained are

COS

$$(\sin \theta)^{\rho} H_{p,q}^{m,n} \left[z (\sin \theta)^{2\delta} \middle| \begin{array}{l} (a_{p}, e_{p}) \\ (b_{q}, f_{q}) \end{array} \right] = \frac{1}{\sqrt{\pi}} H_{p+1,q+1}^{m,n+1} \left[z \middle| \left(\frac{1-\rho}{2}, \delta \right), (a_{p}, e_{p}) \\ (b_{q}, f_{q}), (-\rho/2, \delta) \end{array} \right]$$
$$+ \frac{2}{(\pi)^{\frac{1}{2}}} \sum_{r=1}^{\infty} H_{p+2,q+2}^{m,n+2} \left[z \middle| \left(\frac{1-\rho}{2}, \delta \right), (-\rho/2, \delta), (a_{p}, e_{p}) \\ (b_{q}, f_{q}), \left(-\frac{\rho+u}{2}, \delta \right), (-\frac{\rho-u}{2}, \delta \end{array} \right] \times$$

$$(\sin \theta)^{\rho} H_{p,q}^{m,n} \left[z \left(\sin \theta \right)^{2\delta} \middle| \begin{array}{l} (a_{p}, e_{p}) \\ (b_{q}, f_{q}) \end{array} \right]$$

$$= \frac{2}{(\pi)^{\frac{1}{2}}} \sum_{r=1}^{\infty} H_{p+2,q+2}^{m,n+2} \left[z \left[\left(\frac{1-\rho}{2}, \delta \right), \left(-\rho/2, \delta \right), \left(a_{p}, e_{p} \right) \\ (b_{q}, f_{q}), \left(-\frac{\rho+u}{2}, \delta \right), \left(-\frac{\rho-u}{2}, \delta \right) \right] \times$$

$$\times \sin \frac{\pi r}{2} \sin r \theta, \qquad (8)$$

where δ is a positive number and

$$\begin{split} &\sum_{j=1}^{p} e_{j} - \sum_{j=1}^{q} f_{j} < 0, \qquad \sum_{j=1}^{n} e_{j} - \sum_{j=n+1}^{p} e_{j} + \sum_{j=1}^{m} f_{j} - \sum_{j=m+1}^{q} f_{j} \equiv K > 0, \\ &| \arg z \mid \frac{1}{2} K < \pi, \ Re \ 2 \ \delta \ b_{j} | f_{j} > 1 - \rho \ (j = 1, \dots, m), \qquad 0 < \theta < \pi. \end{split}$$
Proof

To establish (7), let

$$f(\theta) = (\sin \theta)^{\rho} H_{p, q}^{m, n} \left[z (\sin \theta)^{2\delta} \middle| \begin{array}{c} (a_{p}, e_{p}) \\ (b_{q}, f_{q}) \end{array} \right] = \frac{C_{0}}{2} + \sum_{r=1}^{\infty} C_{r} \cos r\theta.$$
(9)

Equation (9) is valid since $f(\theta)$ is continuous and of bounded variation in the open interval (0, π), when $\rho \ge 0$.

Multiplying both sides of (9) by $\cos (u \theta)$ and integrating with respect to θ from 0 to π , we get

$$\int_{0}^{\pi} (\sin \theta)^{\rho} \cos u \theta H_{p, q}^{m, n} \left[z (\sin \theta)^{2\delta} \Big|_{(b_{q}, f_{q})}^{(a_{p}, e_{p})} \right] d\theta$$
$$= \frac{C_{\theta}}{2} \int_{0}^{\pi} \cos u\theta d\theta + \sum_{r=1}^{\infty} C_{r} \int_{0}^{\pi} \cos r\theta \cos u\theta d\theta$$

Now using (5) and the orthogonality property of cosine functions, we have

$$C_{u} = \frac{2}{(\pi)^{\frac{1}{2}}} \cos \frac{\pi u}{2} \quad H_{p+2,q+2}^{m, n+2} \left[z \left| \left(\frac{1-\rho}{2}, \delta \right), (-\rho/2, \delta), (a_{p}, e_{p}) \right| \right]$$

From (9) and (10), the result (7) is obtained. (10)

From (9) and (10), the result (7) is obtained.

To prove (8), let

$$f(\theta) = (\sin \theta)^{\rho} H_{p, q}^{m, n} \left[z (\sin \theta)^{2\delta} \left| \begin{pmatrix} a_p, e_p \\ (b_q, f_q) \end{pmatrix} \right] = \sum_{r=1}^{\infty} C_r \sin r\theta$$
(11)

Multiplying both sides of (11) by $\sin(u \theta)$ and integrating with respect to θ from 0 to π then using (6) and the orthogonality property of sine functions, we obtain

$$C_{u} = \frac{2}{(\pi)^{\frac{1}{2}}} \sin \frac{\pi u}{2} \quad H_{p+2,q+2}^{m, n+2} \left[z \left| \frac{\left(\frac{1-\rho}{2}, \delta\right), (-\rho/2, \delta), (a_{x}, e_{p})}{(b_{q}, f_{q}), \left(-\frac{\rho+u}{2}, \delta\right), \left(-\frac{\rho-u}{2}, \delta\right)} \right]$$
(12)

From (11) and (12), the formula (8) follows immediately.

PARTICULAR CASES

In (7), assuming \mathfrak{z} as a positive integer, putting $e_j = f_i = 1$ ($j = 1, \ldots, p$; $i = 1, \ldots, q$), using the formula

$$H_{p, q}^{m, n}\left[\begin{array}{c|c} z & (a_{p}, 1) \\ (b_{q}, 1) \end{array}
ight] = G_{p, q}^{m, n}\left[\begin{array}{c|c} z & a_{p} \\ b_{1} \end{array}
ight],$$

and simplifying with the help¹ of (1), (4) and (9), we get a result recently obtained by Bajpai⁹, viz.

$$(\sin \theta)^{\rho} G_{p, q}^{m, n} \left[z (\sin \theta)^{2\delta} \Big|_{b_{q}}^{a_{p}} \right] = \frac{1}{(\pi \delta)^{\frac{1}{2}}} G_{p+\delta, q+\delta}^{m, n+\delta} \left[z \Big|_{b_{q}, \Delta(\delta, -\rho/2)}^{\Delta(\delta, \frac{1-\rho}{2}), a_{p}} \right] + \frac{2}{(\pi \delta)^{\frac{1}{2}}} \sum_{r=1}^{8} G_{p+2\delta, q+2\delta}^{m, n+2\delta} \left[z \Big|_{b_{q}, \Delta(\delta, -\rho), a_{p}}^{\Delta(2\delta, -\rho), a_{p}} \right] \times \cos \frac{\pi r}{2} \cos r\theta, \qquad (13)$$

where 2 (m + n) > p + q, $|\arg z| < (m + n - \frac{1}{2}p - \frac{1}{2}q) \pi$, Re $(2 \ \delta b_j) > -\rho - 1 (j = 1, \dots, m), \ 0 < \theta < \pi$.

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr. S. D. Bajpai of Regional Engineering College, Kurukshetra for his kind help and guidance during the preparation of this paper.

REFERENCES

1. ERDELYI, A., "Higher Transcedental Functions," Vol. 1, (McGraw-Hill, New York), 1953.

2. CARLSON, B. C. & GREIMAN, W. H., Duke Math. J., 33 (1966), 41.

3. MACROBERT, T. M., Math. Z., 71 (1959), 143.

- 48
- 4. MACROBERT, T. M., Math. Z., 75 (1961), 79.
- 5. JAIN, R. N., Math. Japan, 10 (1965),101.
- 6. KESARWANI, R. N., Compositio Math., 17 (1966), 149.
- 7. BAJPAI, S. D., Gaz. Mat. (Lisboa), 28 (1967), 40.
- 8. BAJPAI, S. D., Proc. Camb., Phil.Soc., 65 (1969), 703.
- 9. BAJPAI, S. D., "Fourier series for G-functions". (Under communication).
- 10. NIELSEN, N., "Handbuch der Theoric der Gamma-function", (Leipzig), 1906.
- 11. FOX,C., Trans. Amer. Math. Soc., 98 (1961), 395.
- 12. BRAAKSMA, B. L.J., Compositio Math., 15 (1963), 239.
- 13. RAINVILLE, E.D., "Special Functions" (McMillan & Co. Ltd., New York), 1967.