SOME CONTOUR INTEGRALS INVOLVING G-FUNCTION OF TWO VARIABLES

H. C. Gulati
Govt. College, Neomuch (M.P.)*

(Received 11 March 1970; revised 18 April 1970)
The object of this paper is to evaluate contour integrals for G-function of two variables. Some results for Meijer's G-function have been obtained as particular cases.
Some contour integrals involving G-function of two variables have been evaluated. On specialising the parameters the results for Meijer's G-function as particular cases are obtained.

For the sake of brevity we have used the symbol $\Delta(\delta, \alpha)$ for the set of parameters α / δ, $(\alpha+1) / \delta, \ldots,(\alpha+\delta-1) / \delta$ and $\left(a_{p}\right)$ stands for $a_{1}, a_{2}, \ldots, a_{p}$ throughout.

Agarwal ${ }^{1}$ and Sharma ${ }^{2}$ defined the G-function of two variables in the form of MellinBarnes type integral which has been represented by Bajpai ${ }^{3}$ as

$$
\begin{align*}
& \times \frac{\prod_{j=1}^{n_{3}} \Gamma\left(1-e_{j}+s+t\right) \quad \eta^{*} \quad \zeta^{t}}{\prod_{j=1}^{p_{3}+1}} \Gamma\left(e_{j}-s-t\right) \prod_{j=1}^{q_{3}} \Gamma\left(1-f_{j}+s+t\right) \quad d s d t . \tag{1}
\end{align*}
$$

The contarr L_{1} is in the s-plane and runs from - $i \infty$ to $+i \infty$ with loops if necessary, to ensure that the poles of $\Gamma\left(b_{j}-s\right), j=1,2, \ldots, m_{1}$ lie on the right and the poles of $\Gamma\left(1-a_{j}+s\right), j=1,2, \ldots, n_{1}$ and $\Gamma\left(1-e_{j}+s+t\right), j=1,2, \ldots, n_{3}$ to the left of the contour. Similarly the contour L_{2} is in the t-plane and runs from $-i \infty$ to $+i \infty$ with loops, if necessary, to ensure that the poles of $\Gamma\left(d_{j}-t\right), j=1,2, \ldots, m_{2}$ lie on the right and the poles of $\Gamma\left(1-c_{j}+t\right), j=1,2, \ldots, n_{2}$ and $\Gamma\left(1-e_{j}+s+t\right), j=1,2, \ldots, n_{3}$ lie to the left of the contour. Provided that

$$
0 \leqslant m_{1} \leqslant q_{1} ; 0 \leqslant m_{2} \leqslant q_{2} ; 0 \leqslant n_{1} \leqslant p_{1} ; 0 \leqslant n_{2} \leqslant p_{2} ; 0 \leqslant n_{3} \leqslant p_{9} ;
$$

the integral converges if

$$
\left.\begin{array}{l}
\left(p_{3}+q_{3}+p_{1}+q_{1}\right)<2\left(m_{1}+n_{1}+n_{3}\right) ;\left(p_{3}+q_{3}+p_{2}+q_{2}\right)<2\left(m_{2}+n_{2}+n_{3}\right) ; \\
|\arg \eta|<\left[m_{1}+n_{1}+n_{3}-\frac{1}{2}\left(p_{3}+q_{3}+p_{1}+q_{1}\right)\right] \pi \tag{2}\\
|\arg \zeta|<\left[m_{2}+n_{2}+n_{3}-\frac{1}{2}\left(p_{3}+q_{3}+p_{2}+q_{2}\right)\right] \pi
\end{array}\right\}
$$

The right hand side of (I) shall, henceforth be denoted by $G\left[\begin{array}{l}\eta \\ \zeta\end{array}\right]$
We establish the following integrals :

$$
\begin{align*}
& =\binom{x}{2}^{\rho-\frac{3}{2}}(h)^{\frac{1}{2}-\rho}(2 \pi)^{h-1} G^{\left(m_{1}, m_{2}\right) ;\left(n_{1}, n_{2}\right), n_{3}} \\
& \left(p_{1}+2 h, p_{2}\right), p_{3} ;\left(q_{1}, q_{2}\right), q_{3} \\
& \left\{\begin{array}{l|l}
\eta\left(\frac{2 h}{x}\right)^{2 h} & \begin{array}{l}
\left(\begin{array}{l}
\left(a_{p_{1}}\right), \Delta\left(h, \frac{\rho+\nu+\frac{1}{2}}{2}\right. \\
\left(e_{p_{3}}\right)
\end{array}\right. \\
\zeta
\end{array} \\
\left(b_{q_{1}}\right) ;\left(t_{q_{2}}\right) \\
\left(f q_{3}\right)
\end{array}, \Delta\left(h, \frac{\rho-\nu+\frac{1}{2}}{2}\right) ;\left(c_{p_{2}}\right),\right\} \tag{3}
\end{align*}
$$

where h is a positive number and

$$
\operatorname{Re}\left[\rho+2 \hbar\left(1-a_{j}\right)\right]>|\check{R} e v| \cdots \frac{1}{2}, \quad j=1, \quad 2, \cdots n_{1} .
$$

Similar results hold for

$$
\begin{aligned}
& G\left[\begin{array}{l}
\eta \\
\zeta(y)^{2 h}
\end{array}\right] \text { and } G\left[\begin{array}{l}
\eta(y)^{2 h} \\
\zeta(y)^{2 h}
\end{array}\right]
\end{aligned}
$$

where δ is a positive number and

$$
\operatorname{Re}\left[\nu+\delta\left(1-a_{j}\right)\right]>0, j=1,2, \ldots, n_{1}
$$

Similar results hold for

$$
G\left[\begin{array}{l}
\eta(x+\alpha)^{\delta} \\
\zeta(x+\alpha)^{\delta}
\end{array}\right] \text { and } G\left[\begin{array}{c}
\eta \\
\zeta(x+\alpha)^{\delta}
\end{array}\right]
$$

In all the above integrals, the conditions of validity are same as (2).
Proof:-To prove (3), expressing the G-function on the left as in (1) changing the order of integration and evaluating the inner integral with the help of the integral

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} y^{\frac{1}{2}-\rho} I_{\nu}(x y) d y=\frac{\left(\frac{x}{2}\right)^{\rho-\frac{3}{2}}}{\Gamma\left(\frac{\rho+\nu+\frac{1}{2}}{2}\right) \Gamma\left(\frac{\rho-\nu+\frac{1}{2}}{2}\right)}, R e(\rho)>|R e \nu|-\frac{1}{2}
$$

which follows from reference 4. We get that left hand side of (3) equals .

$\times \frac{\left.\prod_{j=1}^{n_{2}} \Gamma\left(1-\varepsilon_{j}+t\right)\right)_{j=1}^{n_{s}} \Gamma\left(1-e_{j}+s+t\right)\left(\frac{x}{2}\right)^{\rho-2 h s-\frac{3}{2} \eta^{6} \xi^{t}}}{\prod_{j=n_{3}+1}^{p_{2}} \Gamma\left(e_{j}-s-t\right) \prod_{j=1}^{q_{3}} \Gamma\left(1-f_{j}+s+t\right) \Gamma\left(\frac{\rho+\nu+\frac{1}{2}}{2}-h s\right) r\left(\frac{\rho-\nu+\frac{1}{2}}{2}-\hbar s\right)} d s d t$.
Now using (1) and multiplication formula for Gamma functions ${ }^{5}$, the integral (3) is proved.
The integral (4) is established by adopting the same method as above and using the formula ${ }^{6}$ viz.

$$
\frac{1}{(2 \pi i)} \int_{c-i \infty}^{c+i \infty} e^{x_{\mu}}(x+\alpha)^{-\nu} d x=\frac{\mu^{\nu-1} e^{-\alpha \mu}}{-\Gamma_{\nu}}, R e(\nu)>0
$$

PARTICULAR CASES

Putting $m_{2}=q_{2}=1, n_{2}=n_{3}=p_{2}=p_{3}=q_{3}=0$, and making use of the formula given by Bajpai ${ }^{3}$ viz.
we get from (4),

$$
\begin{align*}
& \frac{1}{(2 \pi i)} \cdot \int_{c-i \infty}^{c+i \infty} e^{x \mu}(x+\alpha)^{-\nu} G_{p_{1}, q_{1}}^{m_{1}, n_{1}}\left[\eta(x+\alpha)^{\delta} \left\lvert\, \begin{array}{l}
\left(a_{p_{1}}\right) \\
\left(b_{q_{1}}\right)
\end{array}\right.\right] d x \\
= & \frac{\mu^{\nu-1} e^{-\alpha \mu}}{(2 \pi)^{\frac{1}{2}-\frac{\delta}{2}}(\delta)^{\nu-\frac{1}{2}}} G_{p_{1}+\delta, q_{1}}^{m_{1}, n_{1}}\left[\eta\left(\frac{\delta}{\mu}\right)^{\delta} \left\lvert\, \begin{array}{l}
\left(a_{p_{1}}\right), \Delta(\delta, \nu) \\
\left(b_{q_{1}}\right)
\end{array}\right.\right] \tag{6}
\end{align*}
$$

Specialising the parameters as above and making use of (5), we get an integral ${ }^{7}$ as a particular case of (3).

ACKNOWLEDGEMENTS

I am thankful to DC. S. D. Bajpai of Regional Engineering College, Kurukshetra, for his guidance in the preparation of this paper. I am grateful to the refree for his useful sug, gestions to revise the paper. My thanks are also due to the Principal, Dr. D. S. Joshi for the facilities he provided to me.

REFERENCES

1. Agabwai, R. P., Proc. Nat. Inst. Sci., India, 31A (1965), 536-546.
2. Sharma, B. L., Ann. Soc. Sci., Bruxelles, T, 79 (1965), 26-40.
3. Bajpar, B. D., Rivista Fac. Ci., A (2), Mat. 13 (1970).
4. Erdelyt, A., "Tables of Integral Transforms, VoI. 2" (MoGraw-Hill), 1954.
5. Erdelyi, A., "Higher Transoendental Funotions, Vol. 1" (MoGraw-Hill), 1953.
6. Erderiyi, A., "Tables of Integral Transforms, Vol. 1" (MoGraw-Hill), 1954,
7. Bajpat, S. D., Def. Sci, J., 20 (1970), 111-116,
