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Considering the Beltrami surfaces of revolution obtained by revolving a system of confocal 
hyperbolae in the meridian plane, various kini€icA and kinematic properties of steady 
diabatic complex-lamellar gas flows have been studied. 

Several physisal and chemical phenomena invalidabe the assumpbion of adiabatic 
flow in many compressible %ow problems. TBe inviscid non-conducting steady gas 
flows with energy addition by heat sources are termed diakatic and oorresponding to 
heabing processes are thermodynarnicaXly mvemible The results from diahah flow 
studies provide bhe basic insight into heab effects which is necessary. Hicks1 has for- 
mulated the fundamental equations prnin@-diabaWsteady flows in Crocco's velocity 
secbor field and considered several interesting properties of the flows. The nonlinear 
okaoter  af the epatians governing steady diababio gas flow preset).& difficnlbjes tm 
obbain exact, solutions. Conseqgentdy herein adopting bhe inverse method, viz., 
assigning the geometric patbern bo the Beltrami surface as confocal hyperbolae in the 
meridian plane, intrinsic pmperbies of &plex-lameby flow have been studied, using 
bhe intrinsic equabions govern$g~&aba&ic &ws estra%&heb earlier2. From these, possible 
flows are obhained. Complex-lamellar velocity vector field is chaxacberised and oh rved  
that bhe streamIines form bbe lines of curvabures. Ths vortex lines can be geodesies 
or asymptobic lines on %he Belbremi surfaces. The geomebry of the BeltramiL surfaces, 
when bhey form a family, of confocal hyperbolae in tihe meridion plane is complete$ 
determined and using these inbinsic" decomposi~ion is effected. The necessary 
mmpatibiliby wndibiow governing the &iw are obtained. 

F U N D A M E N T A L  E Q U A T I O N S  

%he h d w e n h a l  equations governing steady diabatic gas flow in the absence 
sfi e&aneo~ few, in Crocco7s velocity vector field are given below in the u(lval ' 
n&a-idon] 
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In addition b these we add the Crocco's vorbiciby equation for adiabatic gas flow 

where W ,  q, y, Pt, Vt, OPT#, T and S are the reduced velocity vectmr, the heab content 
the adiabatic exponent, the tmtd pressure, the limiting velocity, the stagnation 

enthalpy, the temperature and the specific entropy respectively and W = I 1 
GEONETRIC R E S U L T S  

- The single paramebr family of surfaces normals ~IO which determine the ckection 
of flow are defined as the Belbrami surfaces, the velocity vector field are known as 
complex-lamellar or doubly laminar. These do exist in the case of a complex-lamehr flow. 

In such cases the velocity vector can be &ten as 

where ( r )  = Constant and 4 (r) = Consbanb are known as the dislsnoe function 
and the Relbrami surf'ace. Operating Curl on (7), we geb 

This shows that the vortex line is the curve of inOersection of $he Belbrami and ibCC 
disbance funobion surface. U h g  orbhogonal property of streamline and vorbexline and 

3 
denoting 6 as the unit tangent vector to a streamline, we have 

which is the condition that the streamlines to be the lines of cu rva~eS .  In general 
the normal plane to s streamline contains the vortexlines, whjch are on the Beltrrami 

. surfaces. But by proper choice of the directions of the sbreamlines and the vo*xlin~ 
the vorbexlines can be proved as geodesics or asymptotic lines on a Belbrami surfac~. 

The geometry of the Beltrami surfaces, when they are family of hyperbolae in the 
meridian plane is given by 

where a, t9 are comtanb to be determined later and. 6 js the parameber. The normals 
to the hyperbolae in the Mefidian plane Uf-- f i  22 = 6 are the tangents 
to the dreamlines which determine the direction d flow in the meridian plane. There- 
fore the psincipal normal vector to the stfeamline is along the tangent bo the hyperbolae, 

4 
and the binormal is along the parallels perpendi;oular to the meridian plane. 



. 4 + 
Coqidering 8, la and b as the unit tangent, principal normad and binormal to the * 

streamline in the presenti problem these oorrespond to : 

3 au 
(a) f, = i 7  -" - 

+ Pz OCU 
t (b) n = & u -  + & - (11) 

t l  

where t2 = a22C2 $ P z 2  

The curvature K, the mean curvature J and the torsion I of the streamline 
respeotiveb are given by 

(a) K = 
(a -k P )  aPuz 

t3 1 
2a - /I 1 

(b) J = - - - (a3~z.l P3z2) t t3 

I N T R I N S I C  DECOWPOSITION \ 

We shall make use of the basic intrinsic equations established in our earlier investi- 
ga.bio11~2 to study the kinemabic and kineti0 properties of the flows described above, 
when 9he Be1In:ami surfam are hyperbolae in the meridian plane. 

The fundamental equations ( I )  and (2) in intrrineie form &re given by2 
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a d  d yhere - - - are the inbrimiio derivabive~,al& ihe heat&inheamlinss, thei. &tip41 
&' an ' .& 

Y i - 1 '  normals, binormala and A = --- 
y - l  ' ,- - 

Making use of ( I l a )  and (12b) in (13) ,  we obtain the following 
, 

I 

For Chaplygin's adiababic gas A = 0, ( 1 5 )  simplifies to 
aW a Jf' au- - bz - 

1 f2 a - 8 ) -  - (gU2-$t l )= t2 au W (Wal) a2 (16) 

Wribing bhe Lagrange's system of auxiliary equakie~r, we get 

An intermediabe integral of ( 1 7 )  is - - 

where C is wnstant of ink$.r&ipn. 

The general solubion of (17) can be obtained by dsing (18). as 

f i ~ / a - ~ ~ P ' - F 2 P 1 a )  ' 

u (a2 u2 + 2 ~ / a  + 82 C2/a) 2~ (W 
which determines tihe velocity for adiabatic flow. 

+ + ? 
Forming the scalar prorhrct oEfe)  & +  tt mdr;'b. %e ob6ain the following 

2YWq 

(21)  
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Tbae mentwn equations can ako be wr&ben ia intrinsic form as 

- 2 ~  w ( ,+  -- ccu ' w - Edw) - -(is) 
(Y-1) ( l - ~ q  t 2?u t 8s * - 

Operating Curl on (2)' i.e. eliminating PI and uaing (12) we obtain the integrability 
condition 

From bhese adiabatic case can be discu~sed as a special case. 
* I 

Writing the Lagrange's sysbem of auxiliary equatrions for (20) we gef 

Since bhe intermediabe integral for (27) is 6he same as (18) and W is given by a similar 
relation as b b b  of (19)' for the given disbribubion of heab, the general solution for pt 
can be written as -. 

Using this we can obtain an analytic value of bhe gas dynamic pressure p from (4). 

Making use of ( l la)  in (6) 'we obtain bhe analybic solutrions V ,  and Tt as 

log T, = a d u + (u8za) - (30) 

h (29), (30) and 13) we can evaluab the temperature and trhe actual velocity 
V = WVt, which hold along an individual wbnsmhe. 



In the case of adiabatio steady gss flow, bhe vorljioity rrnd energy equatione are 
given by 

. * 
3 -b as' v $ v ~ . C V ~ Z W = W ~ V ~ ( ~ ~ ~ +  a @ E )  ax + T  ( ~ h ~  + a u 3  - 

Thedore lhe dpeoifio entropy is given by 

{ '  s = f (VPZU) = S (x8 + y%)Pl2# (33) 

Ths oompabibili~y oondition for adiababict oaiw a n  be deduoed fsam (a@)? Hemp 
the adiababio phenomenon can be discussea as special oases of $his invesbi@ion. 
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