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Considering the Beltrami surfaces of revolution obtained by revolving a system of confocal
-hyperbolae in the meridian plane, various kinetic” and kinematic properties of steady
diabatic complex-lamellar gasflows have been studied.

Several physical and chemical phenomena invalidate the assumption of adiabatic -
flow in many compressible flow problems. The inviscid non-conducting steady gas
flows with energy addition by heat sources are termed diakatic and corresponding to
heating processes are thermodynamieally reversible. The results from diabatic flow
studies provide the basic insight into heat effects which is necessary. Hicks' has for-
mulated the fundamental -equations governing-diabatfcsteady flows in Crocco’s velocity
vector field and considered several interesting properties of ‘the flows. The nonlinear
character of the equations governing steady diabatic gas flow presents difficulties to
obtain exact solubions. Consequently herein adopting the inverse method, viz,
assigning the geometric pattern to the Beltrami surface as confocal hyperbolae in the
meridian plane, intrinsic preperties of complex-lameller flow have been studied, using
the intrinsic equations governing' diabatic flows established earlier?. From these, possible
flows are obsained.- Complex-lamellar velocity -vector field is characterised and observed
that the streamlines form the lines of curvatures, The vortéx. lines can be geodesies
or asymptotic lines on the Beltrami surfaces. The geometry of the Beltrami: surfaces,
when they form a family. of canfocal hyperbolae in. the meridian plane is completely
determined and wusing these intrinsic decomposition is effected. The necessary
compatibility conditions governing the flow are obtained. ’ -

FUNDAMENTAL EQUATIONS
The fundamental equations governing steady diabatic gas flow in the absence

of extraneous forces, in. Crocco’s velocity vector field are given below in the usual”
natation? ' - <
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In addition to these we add the Crocco’s vorticity equation for adiabatic gas flow
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where W, g, v, Py, Vi, C,Ti, T and 8 are the reduced velocity vector, the heat content
the adiabatic exponent, the total pressure, the limiting velocity, the stagnation

-
enthalpy, the temperature and the specific entropy respectively and W = | w | '

GEOMETRIC RESULTS

. - The single parameter family of surfaces normals to which determine the direction
of flow are defined as the Beltrami surfaces, the velocity vector field are known as
complex-lamellar or doubly laminar. These do existin the case of a complex-lamellar flow.

In such cases the velocity vector can be written as
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W=g(r)V$(r) -
where ¢ (r) = Constant and ¢ (r) = Constant are known as the distance function
and the Beltrami surface. Operating Curl on (7), we get - .
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This shows that the vortex line is the curve of intersection of the Beltrami and its
distance function surface. Using orthogonal property of streamline and vortexline and
-

denoting S as the unit tangent vector to a streamline, we have
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which is the condition that the streamlines to be the lines of curvature?, In general

_ the normal plane to a streamline contains the vortexlines, which are on the Beltrami
surfaces. Bub by proper choice of the directions of the streamlines and the vorbexlines

the vorbexlines can be proved as geodesics or asymptotic lines on a Beltrami surfaces.

The geometry of the Beltrami surfaces, when they are family of hyperbolae in the
meridian plane is given by - .

T =ucosl, y=usmb, aut—pzrr=2= (10) .

where o, B are constants to be determined later and 8 is the parameber. The normals
to the hyperbolae in the meridian plane o« ui'— B 22 = & are the tangents

- to the streamlines which determine the direction of flow in the meridian plane. There- ;
fore the principal normal vector to the streamline is along the tangent to the hyperbolae,
and the binormal is along the parallels perpendicular to the meridian plane.
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Conqidermg S n and b as the unit tangent prmclpal norma.l and binormal to the
streamline in the present problem these correspond . to ‘
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© where 2 = ofu? + 22

The curvature K, the mean curvature J and the torsion » .of the streamline -

respectively are given by .
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INTRINSIC DECOMPOSITION

We shall make use of the basic intrinsic equations established in our earlier investi-

gations? to study the kinematic and kinetic properties of the flows described above, :

when the Belﬁraml surfaoes are hyperbola.e in the meridian plane.
The fundamenta.l equatmns (8))] and (2) in intrinsic fqrm are given by?2 .
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/‘where Ti;’ T e e the intrinsic derivativesalong the streainlines, their principal
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normals, binormals and A = el .

Making use of (11a) and (12b) in (13), we obtain the following
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*  For Chaplygin's adiabatic gas X = 0, (15) simplifies to
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" Writing the Lagrange’s system of auxiliary equatlen, we get |
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An intermediate integral of (17) is ~
| C uBe = C - ‘ (18)
~ where C is constant of integration. ‘ ‘
The general solution of (17 ) can be obtained by using (18) as _
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which determines the veloclty for ad1abablc ﬂow
Forming the scalar product of-{2) by 5‘6‘ n arlitéh*br ‘we obtain the following
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These momentum equamons cen also be written in intrinsic form as
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Operating Curl on (2), i.e. ehmma{nng P, and using (12) we obtain the integrability
condition . ) ,
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-From these adiabatic case can be discussed as a special case. '

Writing the Lagrange’s system of auxiliary equations for (20) Wé get
/ﬂ)_( /_,éi.) ( [ ZveW )
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Since the intermediate mtegral for (27) is the same as (18) and W is given by a similar
relation as that of (19), for the given distribution of heat, the geneml solution for p;

can be written as

’ . 2ytq W :
log 1 = f (y~‘1)y(1q——W2) a6 (uh) (28)

Using this we can obtain an analytic value of the gas dynamic pressure p from (4).

Making use of (11a) in (5) we obtain the analytic solutions ¥, and 7', as
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From :(29), (30) and (3) we can evaluate the temperaturo and the actual velocity
V = WV;. which hold along an 1nd1v1dual streamline,
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, II;) the case of admbafac steady gas ﬂow, the vorblomy and energy equa.tmns are
‘given y :
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Therefore the specxﬁc entropy is ngen by _

sowe =g {@epms}

The oompatlblhty condition for adiabatic case can be deduced from (26) Henoe--
the adiabatio phenomenon can be discusséd as special cases of this investigation. = '
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