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The jump sonditions across a three dimensional curved shock in radiation gas dynamios have

“been derived. The successive approximations have been used for different cases depending upon the
%gdme of radiation pressure number. The results are obtained in a form very convenient to treat the
further problems in the subject.

Gross!, Koch?, Marshak® Pai* and Sen® have considered the effects of radiations on
» shock-wave structure and Rankine-Hugoniot conditions. Recently Koch and Gross® have
obtained the jump conditions for hydrcgen for plasmas which are optically thin.” Our
aim, in this paper, is to develop the results for a three dimensional eurved-shock in an
optically thick medium. We have derived relations analogous to Rankine-Hugoniot
relations in ordinary (i.e. without radiation effects) gas dynamics. To achieve the above,
we have used as parameters the density shock strength and either the ordinary normal
Mach number or the effective normal Mach number in front of the shock. The choice
in the above two depends upon the different cases considered.

3

To solve the equation determining the density shock strength which is of higher -
degree than can be handled easil¥, we have used the method of successive approximations
as suggested by Pai®. We have obtained the values of the flow variables behind the shock
completely in terms of the known quantities in front of the shock-surface for different
cases depending upon the values of the radiation pressure number in front of the shock.
‘The graph showing the variations of the density shock strength with the effective normal
Mach number in front has also been plotted and the help of computer has also been taken
to obtain the value of density shock strength upto third approximations, given in a
tabular form. ‘ g

Let the shock configuration be given by
m=3 %0 7 M

where z, (1=1, 2, 3) are the regular cartesian coordinates and 4y* (cc = I,TI) are the Guas-
sian coordinates of any point ‘S’ of the shock surface. We shall denote by z;, o and =)
the tangent and the unit normal vectors to the shock surface’. Letw;, p, pr, p, T and Ep
deniote the velocity components, pressure, radiation pressure, density, temperature and
the radiation energy density of the gas respectively. The components v; of the relative
velocity of the gas with respect to the shock is given by v; = w;—V,, where V, is the
velocity of the shock. “
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- Proceeding in a manner similar to Bleakney & Taub?, Pant & Misra® and considering
the effects of radiations in an optically thick medium, the conservation of mass, momentum

and energy give the following relations, which connect the flow variables on the two sides
of the shock surface. - : \ '
‘ p2Y¥an = p1Vin =M, (2)
mVgs P = MV1n + P, (3)
V2= Vig 5 (4)
L ooy B P2 L o Bm o P
2 P2 pz - 2 P1 PI
‘where '
Un =V 0, Vg = V; Ti, o Pt = P + Pr, P = pRT,
Pﬂz—; ag T4 Ep =ar T*, C,T = ‘7’;__—1_—1—% . ' ©

and‘f, Cv, R, agp, are respectively the ratio of the sl;eciﬁc heats, specific heat at constant

volume, gas constant and the Stefan-Boltzmann constant. In the above relations subscript -

1(2) denotes quantities in front of (behind) the shock and without any subscript refer
to either side of the shock.. The effective normal Mach number in radiation gas dynamics
is given® by ~

r{l+12(r—1)R,} M2,

2 B i
Meen r+20(r—1)R, +16(r —1)R2, " ~ . (M
where M, is the normal shock Mach nfimber and is defined as ,
) ; o v
M, =2 . ®
* T yRT

L]

DERIVATION OF THE JUMP CONDITIONS

_ An attempt to derive relations analogous to Rankine-Hugoniot relations has been
made. The density shock strength & is defined as

s

5= P2 P @
P1 : ® ‘
6 - T :
%) R, = 01, Ry which combining with (2) gives
£° ' | ‘
g :
; R ®)
. 3 )
v 3t . )
g ~ The relative velocity vector of the gas can
/; 2k ORDINARY C.Ast‘, a‘P S sz =0 be expressed as .
E - .
s N
° V; = Uy ni+vawha»‘ (10)
0 1 1

al
10 T 20 30 : B .
EFPECTIVE NORMAL MACHM NUMBER (ME(N) where v%f = af vg , and Gap= i, a i, B18
the metric tensor of the shock-surface’.

Fig. 1—Variation of demsity shoock strength with _- . i
effective normal Mach number. Using (4) and (9), (10) transforms to
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We take the following non-dimensional parameters ,
and o , i o
’ 1 @ L
Ry =B~ 2, (13

where i8 oalled the radiation pressure number. From (2), (6), (9) and (12), the momen-
and the energy laws [i.e., eqns. (3) and (5)] transform respectlvely to )

RS DEE X o N N A
and : o ‘
1 142 R
sary T T*2+Q(T*§)4+(1+§)T*2+ Q(T 2)t |
=<1~+s)(72—+m?+-3—ep4) E - om
From the above relations, using (13) we get the following relations
1+8+T*2(1+8)(1+‘R2p)—1+P+‘PR1p (16)
and ' - R
1
(+8)+T2(1+3)( 1+332p)—(1+8)( Biy)

: -——(1—]—P+PR1,,) , (17)
Ehmmatmg T* from the above two relatlons we obtain ' ‘

1
| (T?’a‘ —1) [1 _]:I_‘8(q2+7R2p)-——{1+R2P+P(1+92+SR2P)(1+R1P)}]

+P(T—¢) (Riy—Ry) =0 , S (18)
where - = i ‘

Equaﬁdn (18) can be put in the foﬂowﬁg convenient form

S[1—(1+48) (g2 + TRyp) LRy + (1+¢2 +8Ryp) Pye }]=0 - (19)
_ Where T . ‘
= (14 Bip) f(Rp) P, . , (20)
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and . SRR / ’ B
by (U+Ey( +¢ F 8By
9B = T B) T + & + 5By) " ‘ (22) -

P, is called the effective value of P in radiation gas dynamics. Equation (19) gives two
008 of 3, one is 8§ = 0, which refers to no shock conditions. The physically important
solution is the other root which gives the density of the gas behind the shock-wave.

This value is igi‘ven‘ by
R 2(1 "‘P2e7‘2e) ) L
= 2 Py, 19, + 13- —1 ’ T (23)
where . ) | | ; |
Cae=DRetr gy

Te = Fr—1) R, +1
and is called the effective ratio of the specifie heats. - Ekq\laﬁoﬁ (18) also glves the following
relations which we shall use later on. o ;

' 8 (1+43) ('1 + Ri) K — 8 (¢34 7R'1'p') v
By—By=""gi5mp gp_Ko+nm D

and .
K (1 + Ry;y) 8 —[(1 4+ Ryp) (?—K)+(T—¢?) {Rap + PRy, — PR, ,}] 38—

— P(T— @) (Byp —Rp) =0, ,
where K=1+4+P(1 +q2—1—8R1p).

The equation corresponding to (19) in ordinary shocks is simple. " Due to the inclusion
of radiation effects this equation beeomes very complicated: In fact, to determine the
values of § explicitly in terms of known quantities in front of the shock, we have to solve
a higher degree equation in 8, as equations (23) and (26) contain R,, and f which them-
selves are function of 8. To get the solution for different cases offered by-different values
of Ry ,,'we take the approximations and for this purpose (23) is the most convenient form. -

(26)

THE CASE WHEN Rlp << 1

In wnis case the temperature in front of THe shock is not very high and therefore the
radiation effects may be neglected -in front of the shoek: From relations (12) and (16),
we obtain ' ' '

\

1481 4 M) (@7)
2T, (14 3)2 (14 Ray)

Using ’the' above relation along with (6), (8), (12), (13)'and (26) we obtain

_T*

2
A
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Ty _ T% 14 s(U4rlly)
i P T4 +Ry

P2 _ ey T4 8(LprBh) T o,
n ol ~ (1+§‘),(1+~1§2»p)f ’

mr (T (1480t 1

e \Tr) = VAT + Ry S

Rop pam v 1 [ 148(1frMz,) 73

By “pr T c040 \TF0+Rm f * @)
K1 (14 Rop) 8 — {(1 + RBap) (¢* — K) + (T — @) (L +P) Roy} 5 —
=P =) Ry =0, - RCUN
where Ky =1+ P (1 +g2). :

For this case we have two possibilities. The first one is of weak shock in which
Ry, << land the other one that of a strong shock in which By, >> 1. When
Ryp <<1, relations (28) to (30) reduce to the Rankine-Hugoniot relations in ordinary
gas dynamies. o B ' ‘

When R,, >> 1, then from (24) -and (20) we have ,‘
73, = 4/3 and Py, 2 f(R,,) P. \ @y -

As a first approximation we take R, -= Ry, then from (21) and (22) we find that fﬁnctions
f and g are nearly equal to unity. Using this fact and (31) in (23) we get (8), = 6, Pailo,
For the second approximation, from (20) to (22) we obtain

: B4 3r4 4 5
g (Ray) = Hrr__—ﬂ,f(lzz,) 2—4%:_3 and P, — “2?%:’15 P. (32)

Using (31) and (32), we get from (23)

187 (r — 1) M2y, — (3r 4 4)

PN T B T i D 8y

He

which determi_nesf the value of & completely in terms of knéwn quantities. For é_very
- strong shock (L.e., M2, >>1),8 =6 irrespective of the value of . This is the maximum
attainable value of 8, while in ordinary gas dynamics it 15 5 for r — 1.4,

From (29) we have ; : :
po o § 148 (LM, 13 _of Ry, 14
Ryp = { . e § X 148

From (8),} (11), (28), (2'9)‘ and‘f(34:), we havve for this case th‘e?foﬂb'\‘viﬁ'g telations . ~

(4.
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1’, o { 1 +8(1'_/—|‘-.»rM21;);;i/4 | . 1
Tt (T+8Ry §
Ps o (14 { 148 (14 rM2,) U4
S U TR, }
Par ~ 1 +8(1+7M21n? ‘ o L (35)
ne = (1+3)Ri'p*,y ’ [
R“, ~' { 14-8(1 47 M2y,) 13/4
(1+ %) (1 49) Rl,,
-—ﬂz—-= 1+8andvz,-=;v],-——-—~—~v1nm,

p1 ) , 148

where & is given by (33).

The above relatlons determine the flow variables behind the shock m terms of the
known flow quantities in front of the shock.

THE CASE WHEN R >> 1

In this case the temperature of the gas in front of the shock is high and therefore,
the radiation effects in front of the shock cannot be neglected and vonsequently, they can-
not be neglected behind as well, i.e., Rgp >> 1, irrespective of the shock strength.’ )

From (20) to (22) and (24) we have — e
g(Ryp) 21, f(Bep) =1, ) o .
r2e 43 and Py, = Ry,/(rM?1,) } . (36?

ﬁsing the above relations in (23) we obtain

6 (M2 — 1)

S= e | (31

. o _ - o . 3y M2 v
where the effective normal Mach number in front of the shock for this case is M2, » = 1% In
r
Using (13), eqn. (16) transforms to - -

(T*)t + A=1T% — A-1B =0, ' (38)
- PP(145 14 P+ PRy,) (1+8) —1
whee | 471 “(R‘;]i“)‘ ad = LE +(1 j}f)s)(z A=l (a9

For Bip >> 1, (I%)! >> 471 T%,, Pa,11° Therefore, from (8), (11)* and. ¥
(38) using (8), ( 12), (18), (6) and (39) we obtain the following relations. S
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£
T, 4 5 14
-fl—_—{l-l-f—:{m‘wm} ,

/%;(l+8){1+4§— 115 Lan }1/4,’
% ;1+8andv2,-=vlij——vlz—‘ T_—ls——S—

where 3 is given by (37).

3/4
,

Vin My
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CASE WHENR,;p I8 NOT TOO LARGE COMPARED TO UNITY

BUT STILL (T*)* >> A'T*, HOLDS

Using By, = Ryp as the first apptoxima.tion, we obtain from (20) to (22) and (24)

Using above relation in (23), we get
s 2rMa{3(r—DRi,+1}—(1+Rip){8(r—1)Rip+2r}

A (r—1)Ryp

Py, 2 (14 Riy) Pand 1,

3(r—1) Rip+1°

T M {(r—1) (14 Bip) } + (1 + Bip) {8 — D Ry + 27}
and from (6}, (8), (11) to (13) and (39) we get the following relations

r. {1 + Ry, | 87 M, }1/4

T, = Ry + (14 8) Ryp ’

P2 1 —]-' R}_p 8 r M2, }1/4

P a+ ){ Ry, + (1 +9) Bip

P .{ 1+ Ry jil;éﬁihL_}_ |

27 Byyp (1+8)Ryp J°

Reyp ., 1 { 1 4+ Ryp »+ s r M2, }3/4
Rlp =1 + ) Rlp » (1 —I— 8) R]p ’
p E )

o = (LY mdoy = oy — o,

S
)
(41)
(2)
T
G 49
J

which give the variables behind the shock in terms of known variables in front of the shock.
In the above two cases further approximations are obtained by numerical methods, while

in the first case the second approxi

mation obtained gives quite accurate results.

Computed results of variation of shock strength with effective normal Mach number

for different radiation pressure ny
are given in Table 1.

mbers in front of the shock upto third approximations

R
T
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S TABLE]. - S -

VABIATION OF SHOCK BTRENGTH WITH EFFEO’ITVE NOBMAL MACH NUMBER FOR DIFFERENT RADIATION

'PRESSURE NUMBERS IN FRONT OF THE SHOOE

5.
Meln - N
. Rlp_= 01 Rlp =01 R]P = 10 Rlp = 1-5 'R1P=2.0
5 . 3-72404528 4-07‘129861 4-43235970 4-47216702 / 5-36881924
10 4 8079748§ 5-14123631 5 43137551 : ‘ 546909848 5-71651364
15 5+25150395 / 5-50128079 5'70991439 ' 5-72735787 _5-82751561
20 5-48010731 5-66811848 5-81223107 5~‘83‘14657f3 i 5-87796212
25 5-61411763 5-76009751 | 5-86946488 5-88414479 . - 5-90560151
30 5:69989873 5-81672002 '5-90307523 ’ 5-9147(;910 5-92260743 .
35 5'75844191% 5-85434247 592464829 5'934-14:‘.;.1‘2 o 5-93572_903
40 . 5-80036832 . 5v- 88077450 .5-93939591 - L 9‘40'3390574,7 B 5. 94,1_88:'691

Table 1 showa that the shock strength increases with eﬁ'ectlve normal Mach number
. a8 the radiation pressure number in front of the shock mcreases. -

.
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