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Slow unsteady flow of a visoous, incompressible fluid between two plates with roughness along 
their length, under the influence of periodic pressure gradient, has been discussed. Integral trahsfom 
tebhnique has been used to determine presbure and velocity components along and perpendicular to 
the length of the plates and the pressure. Particular oases of sinusoidal roughness when the phase 
differenoes are zero and x have been solved numerically. 

The exact solutions of Navier-Stokes' kquation for viscous, incompressible fluiel 
with axially parallel flow through a tube under the influhce of periodic pressure gradient 
have been discussed by Sexll and Uchida2; while those of CO-axial circular cylinders by 
Verma3. The slow viscous flow between rotating concentric infinite cylinders with axial 
roughness was discussed by Citron4 and the problems of flow of non-Newtonian fluids 
and heat transfer between wavy walls and wavy cylinders have been extensively studied 
by Bhatnagar & Mohan Rao5, Bhatnagar & Mathur6 and Mathurc7. Recently Verma & 
Gaurf' have studied the slow motion of a viscous incompressible fluid in a circular tube 
with axial roughness under the influence of periodic pressure gradient.' 

In this paper, the slow unsteady flow of a viscous incompressible fluid betveen two 
plates with roughness along their length has been discussed. The roughness has been 
taken to be small in comparison with the distance between the plates at  the mouth of the 
channel. Integral transform techniqbe has been used to deteaine the longitudinal and 
transverse velocity components. An expression for the pressure distribution throughout 
the length of the channel has also been obtained. ' Two particular cases of sinusoidal 
roughness have been discussed numerically. 

F O R M U L A T I O N  O F  T H E  P R O B L E M  

The Navier-Stokes' equations in rectangular coordinate system for a viscous incorn- 
premible fluid neglecting the' external forces are 

and the equation of continuity is 
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where 8% as a2 
0 2 s  - + --+- 

ax2 ag2 a22 ' 
ec, v, w are the velocity components along x, y ,  .t dimtiom, v is the hematic  visco- 
sity, and p is the .density of the fluid. 

Uhder the assumption of slow motion, &m (1) to (4) we have 

O"=O (5 )  

If the axis of x is chosen along the length of the and z is measured at *ght 
aagles to it, we have 

Therefore, (1) to (4) are reduced to r 

and 

Using (6) in (7) we get 

Let 

where a is half the distance between the plates a t  the mouth of the channel. 
- -  

Equations (7) to (10) are transformed to 
- 
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The boundary conditions are 

U =  W = O  at Z = 1 + e N 1 ( X )  and Z = -  1 -I- N a ( x ) ,  

T > O ,  x>o 
where s 4 1 is the roughness parameter. ' 

Let y h 

P ( X ,  2, T )  = Po (X, T )  4- P' ( X ,  2, T ) ,  

W (X, 2, T )  = W' ( X ,  2, T ) ,  

' U ( X ,  2, T )  = Uo ( Z , T )  f U' (X ,  Z, T )  
- 

J 
w h m  &he primed quantities are the variations caused by the roughness and Po and Uo 
we .the quantities for the case of smooth plates, given by ' 

BP" = o ,  
42  

(17) , 

ape and -!.%=-- a2Uu 
aT ' 

+ -  
8X - 222 

(18) 
" 

Let - fi = K c ~ e  nT = Re 
, 

aX (19) 

- 
and U O = f ( 2 ) & n i F = &  (20) 

where Re means the real part. 

From (18) to (20) , we have 

f n  (2) -- in 4 (2) = - K ,  r (51) 
the solution of which gives 

Uo (2, T )  = Re - 1 - wsh mE ) einT 1 [ ( mshm '(22) 
where rn = 2/(in), 

which for very slow oscillatiohs, reduces to 
4 

From (12) to (16) we have 

aul - - 
3T (24) 

'3w' - -  
al' (26) 

au' aW' 0, , -+-= 
dX a2 

(26) 

i , 



and 

under the boundary conditions 

U1=-Uo,W1=O a tZ=l++.N,(X)  adz=- l+eN, (X) ,T>O,X>o  

U'=O at - l + s N 2 ( X ) < Z <  l+eNl(X), T>O, X*O 
M E T H O D  OF SOLUZJIION 

Following (20), we assume 
U' (X, Z, T) = (X, Z) cop nT 

Equation (27) ia therefore reduced to 
$8 

, (%+B " ) 2 -  U =" (= (30) 

@3 
v 

8 2 8  
Let J- c"x2 + -j-@- =f (X,2) (31) 

From (30) and (31), we b v e  

a!f aY = in$ - 
, 8x2 + >B (8% 

, 0 0  ' 

Let F (2, 5) .= .,/A 'IT ff (2, X) sin ( 4 ~ )  ax, (33) 
0 

where F (Z,5) is the Fourier sine transform off (2, X). 

Taking Fourier sine transform of (32) we have 
&alp - - (42 + in) F = 0, 
dZ2 (34) . 

I 

the solution of whkh is 
A 5  be 

F (&, 5) = A' ( E )  e + B' (f) e , (35) 

where b = (d52 + thin) and A' (C) and B1 (f) are the constants of integration. 

Taking the Fourier sine tramform of (31), we have 

whme U is the Fourier Bina transform of n. 
From (35) and (3.6) , we write '. 

d2U - -b% bZ - - 4 = A' 4 e + 3' (I) e , (37) 
&Z2 
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the complete solution of which is 
. %+a %?- &Z -& @ 

f l ( 2 ,  f )  = A  (S)e  + B ( t ) e  -i- C ( 0 e  + D ( 6 ) e  , (38) 

where A (I ) ,  B ( f ) ,  C  (6) a,& D (0 are the conqtpnts of integqatiop. 

Taking inverse Bourier sine transform of U, we have 

u' ( X ,  2 ,  T )  = 

* 
b z  -82 l? inT, 

~ e  JLI P(P) e-? B (6) e  +0 (o )  e  -I- 9 ( t ) e  1 sin (tsl , y. (3) 
7 ,  . 

&oni (ab) k e  get 

a W' -=  SV' -- 
zZ ax 

- m -bZ - bZ -62 , fg inT 

= ( -  J [ A ( & .  + w e e  + c c n e  'i + ~ t t ) e  ]Wctx,. ac, 
, 

which gives \ - 
W,' ( X ,  Z, T )  = Re ( - ) ' 

m f  -bZ f bZ -&Z inT 
/ [ - g ~ ( ~ e  + ~ ~ ( t ) e  - - ~ ( t ) e  + e ( t ) Y ] o o s ( t ~ ) ) e  gt (Y) . 
0 

and from (24) and (25) using (39) and (40), we get - ,* 

P' (X,  2, T )  = Re 

where C is t b  c ~ s t a n t  ,of btegratiqp. 

Using the boundary conditions (28) in (39) and (40), we get 

+ B ( P ) ~ x P { ~  ( l + r ~ ~ ( ~ ) ) } + ~ ( f ) e x p ( - ~ ( 1 + . ~ , ( ~ )  

+ D ( o ~ ~ P  ( f ( ~ + ~ N I ( x ) ) ) ]  sin ( E X )  df (42) 
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E 0=-4./ w [ -  ~ ( I ) e x p ( - ~ ( l + ~ ~ ~ ( ~ ) ) }  + 
0 

+ ~ ( l ) e x p ( P  (--I + . N ~ ( x ) ) ~ ]  J sin(5X)dP I - (44) 

I r 
,Q) 

L r o=--d+j [ -$  ~ ( ~ e x p  \--b(- ~ + . N ~ ( X ) ) ] +  
0 

J 

E r r + ~ ; B ( o  expib(- 1 + C N ~  (x)))--c ( ~ e v . i - - t ( - . l +  ~ N * ( x ) )  ) + 
+ D (5) exp ( f (- 1 + r N2 (x))  ) ] cos (EX) C. I (45) 

. Let 

A ( I )  = A. (P) + E A1 (6) + . . . . . . 
and similar expan&s for B (E), C (4) and D (t), (4'3) 

Substituting (46) in (42) to (45) and equating the coefficients of like powers of c, we have 
From coefficients of P 

u 
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- 00 
0 = -4; 1 -x 4 A o ( ~ ) .  " + b B 0 ( 6  e -b -Co(#)e  4 + ~ ~ ( 4 ) 2 ] m ~ ( @ ) g .  

0 

Inverting the above four equations by Fourier sine and coshe integd theomMs, 
we get - 

-b ' b' -X X 
A0 (x) e  + Bo ( X )  e  + Co ( X )  e  + Do ( X )  e = 0- 

x b ' X _  6' -"X X 
- - b' Ao ( x ) e  + 7 Bo (X)e  - C9(X)e / Do ( X )  e  = o - 1 

b' -b' X (47)' 
A0 (X)e  + Bo (X)e  + Co ( X )  e + Do ( X )  e-x= o I 
. x b" X -b' X -- -x I b' Ao (X) e 4- BO (X)e  - C, ( X )  e  + Do (X)e  = o 

) 

J 
where b' = I / X ~  + &pt 
which give * . i. y 

A0 (X) = Bo ( X )  = Co (X) = D, ( X )  L=: (48) 
* - 

From mefficients of el ,  we have 

- -.?a 
-b b -6 

3 K r l  @J4= d$ 1 [A, ( P )  e  + B I  (4) e  + Cl ( I )  e  + (4)e sin d4, 
0 

- 00 
2 4  4  a -6 

o = - - \ / _  1 [ - T ~ l ( f ) e  +-&-Bl(f)e - - C 1 ( b  +Dl (&:] .  
0 

(4X)  64, , 

/ 

- 00 
b -b + 6  - g ~ 2  (x) =\I* 1 [ A  ( f )  e  + BI (4)  e  + cl(6) e + e-' ] sin (fx) df, 

L 0 

. cos ( t X )  dt. 

Inverting the above four equations by Fourier sine and cosine htepal theorems, 
we get 
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4' b' -X X 

- 

A1 ( X )  e  + B1 ( X I  e  + 4 ( X )  e  3 DI (XI e  = KEi (x), 
X  b '  X  b' -X g - - A l ( X ) e  + T B ~ ( X ) e - C ~ ( X ) e  + D l ( X ) e = O  b' 

b' -b' X -X 
A1 ( X )  e  + B1 ( X )  e  + CI ( X )  e + Dl ( X )  e  = - hl% ( X ) ,  

x ' X -b' X -X -- 
b' A1 ( X )  e  + Bl ( X )  e  - C1 ( X )  e  + DI (XI e  = 0  

which gievs 

. 
~ ; k i n ~  use of (48) and (60) in (39) to (41) and collecting only the red pert, the 

complete expressions for the velocities and premure are : 

k r *  U {X, Z, T) = U, {Z, T) + U' ( X ,  Z ,  T )  = -j- (1 - Z2) ws 1 T  + 

sinb I m h 4 Z  -tcoghf cclshIZf6ZainhEsinbf~C- 
sinh 2 cosh t - 6 I N 1  6&) - N2 (8, 1 + 

' 0 

4- 
/ Z  00sh cash 5 2  + ~ o s h  6  sinh f Z  - 6  sinh f sinh EZ c- 

8inhiEcoshE-t k 
sin (EX) cos nT d$ (83) 
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I 

W (X,Z, T) = W'(X, Z, T) 

f z  ~kinh 14 coshf z - 6 cmh 5 shh f z  r - 
sinh f cosh f - f jivl cn - G cs ) + 

0 

€2 sinh fZ cosh 6 - 5 sinh 4 cosh fZ f-  + - sinh f cosh S + 5 1 

Case (i) 

X 
N~ (X) '= -- N1 (X) = sin - t '  

i.e., when the phase difference in the lrwtghneos ef the walls is T. Here 2 nl is the 
wavelength of roughness waves at the walls. 

We may formally write 

where g 2  (6) and 7 1  (5) are the Fourier sine transforms of Nn (X) and NI (X) respec- 
tively and S is the Dirac delta function. 

~ubstituting'(66) in (51) to (63) and making use d e. property d Dksc delta functionQf 
we have 
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2 1 - 2 5  - cosh - sinh - 
P (X, Z, T )  := C -- KX cos rzT - RE E 1 1 

1 1 
sinh - cosh - .+ - E I I 

N U M E R I C A  L D I S C U S S I O N  

The longitudinal and transverse velocity profiles for particular values of E - 0.1 
and I = 1 have been drawn in Fig. I to 5, at  different cross-sections of the channel and for 
various values of lzT. When the phase difference of the sinusoidal roughness of the plates 
is s, the longitudinal velocity decreases as the width of the channel increases and vice versa. 
The transverse velocity profiles in this case have a point of inflexion on the mid plane. 

Thus the resulting effect of, these two veloci- 
ties is that the direction of the flow is tpwards 
the walls if the width of the channel increases 
and away from the w d s  if the width of the 
channel decreases. In the other case when the 
phase difference of the sinusoidal roughness 
of the plates is zero, the longitudinal velocity 
is more in that portioa of the channel where 

Fig. l -Th~ longitudinal profiles at the wall of the channel is nearer to the different feotions of a roughness wave 
for = 0.1 and nT = 0 (-) and and vice versa. 
1~1' = 4 3 .  ( . . . .). 

Fig. 2-The longitudinal velocity profiles at  
- different sections of a roughness wave 

f o r s = O . l a n d n T = 2 ~ / 3  ( . . . . )  and 
nT = a (-- ). 

Pig. 3-The transverse volooity profiles a t  diffe- 
' 

rent seotions of a loughness wave for 
r = 0 . 1  andmT =0(-) andnT = ~ / 3  

' (.. . .). 

Fig, 4--The transverse velocity profiles at  different Fig. 5-The longitudinal velocity profiles 
sections of a roughness wave for E = 0.1 different sections of a roughness wave 
8nd11T = 2n/3 (....) and nT = a forr=O.landnT =O(- - )andn~= 

$ (--1. 4 3  (. . . .). 
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