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Ballistics calculated with this model gives values for muzzle velocity fairly in agreement with 
those given by Hunt-Hinds syatem. Equations in this model have also been integrated 
approximately and the approximate forft~uIae aIeo are found to give quite good values for 
muzzle velocity. 

Hunt-Hinds Syateml (HHS), of internal ballistics is the best of all the existing sdu- 
tions in this field. I t  assumes a shot-start pressure, i.e. it  is thought that the shot begins 
to move only when certain pressure (shot-start pressure) has been developed in the gun. 
It appears that it does not take into account the bore resistance. If it does, it is done 
by changing the effective shot-weight which is true only when the resistance is pro- 
portional to the pressure. But so far our experimental knowledge goes, the bore resistance 
is seen to be quite different. Now why HHS should be so good even after neglecting or 
poorly representing the bore resistance, is a matter of investigation. As an answer to 
this we may think that the shot-start pressure actu'ally replaces the whole resistance by 
a concentrated resistance-so to say-at the initial position of the shot. With this picture 
in mind one may ask, whether we can represent the whole iesidance by a constant 
resistance spread over-so to say-from shot-start to all burnt and also get the muzzle 
velocity in fair agreement with those given by HHS. 

We have found the answer in the affirmative. We have demonstrated this by cal- 
culating the muzzle velocity of orthodox gun by assuming a constant resistance, from 
shot-start to all burnt, in the isothermal model after neglecting the co-volume and then 

A comparing it with the muzzle velocity given by HHS. Here we must say how the compa- 
riaon between the two solutions was made. We must remember that the shot-start 
pressure term [ H  in the HHS is first determined from the recorded peak pressure; then 
w i t h  this 5~ the muzzle velocity and other features are calculated. Similarly we have 
first found the bore-resistance term So from the recorded peak pressure and then ~ 6 t h  
this to muzzle velocity has been calculated. The two muzzle velocities are found to be in 
quite satisfactory agreement when we remember that our calculation is, in isothermal 
model without the co-volume term. We have integrated our equatiohs-mmerically as 
they are, as usual, non-linear and non-integrable. But an ,approximate solution has 
been found which compares favourably -with exact numerical solution for values of M 
around unity (M is the central ballistic parameter). This approximate solution alss gives 
values for muzzle velocity in good agreement with that in HIES if we first calculate the 
bore-resistance term 5,' (according to the approximate solution) to give therecorded peak 
pressure and then calculate the muzzle velocity with this 1,'. The approximate solution 
is easy to handle, and useful for values of M in the neighbourhood of unity. The whole 

I. discussion is confined only totubular propellants; but can be easily extended to cover 
quadratic form function and co-volume. 
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We Mte further that equation (10) gives the initi 

From (10)) (11) and (13) we have 

d% " -  - q=67- , 

or 4 

z at 7 = I -- 6 a Z  (15) - 

From (11)) (12) and (13) we have 

(16) 

which by (16) gives 
t 

(17) 

This is the differential equation for pressure 6. The equation is non-linear aid can 
be integrated numerically which has been done. However, we first give an approximate 
solution-of this equation by successive approxima~o~is. 

Since 6 = I& initially, as a first approximation we put t = to on the right hand side 
of (16' and get - - 

z 
(18) 

Integrating and using (15)) we have 

r 2 l = I A q  @ 
(19) 

-c Constant = 1 (initial value). 
I 

\ 



TABLE 2 

M = 1, l;, = Zo = 0.3 

c 

R'umerical integration . ~ Approximate solution 
-- 

2 I 7) 5 - f I )  - b "  

0.3 1 .00000 0 30000 1~00000 ' O m  30000 
0.4 1.00128 ,01366 e39949 - 1.00128 a01370 -39948 
0.5 1 * 00755 e04646 -4962-1 1.00165 ~04675 a49620 
0.6 1.02000 -09105 a58823 1 .02030 09206 b58806 
0.7 1.03845 ~14349 -67411 , 1.03894 el4581 -67380 
0.8 1 -06240 ,20144 75298 1 a06335 ,20575 -75237 
0.9 1.09188 ~26346 -82431 1.09359 *27042 .a2296 
1.0 1 . 1263 ,32837 n88787 1.1289 a33881 -88581 

- 
TABLE 3 

M = 2, bo = 2, = 0.1 

Numerical integration Approximate solution 

5 z "I 5 I 9 5 
, . - . ,  

0.1 1~00000 0 -10000 1 ~00000 0 .loo00 
0;2 . 1.01122 05432 -19776 - 1.01338 46126 .I9735 
0.3 1 .OS[i76 17085 -28415 1-06149 18028 a28263 
0.4 1.12956 .30754 e35413 1.13952 .32274 .35102 
0.6 ' 1.23890 ,45508 -40687 1.24495 -41812 * 40164 
0.6 1.35330 ~60814 e44336 1.37796 .64164 43543 
0.7 1 a50374 . 76423 .465@ 1.54066 ~81082 ,45437 - 
0.8 1 m68256 e92180 -49547 1.73632 'e98412 a46075 

' 0.9 1 e89279 1.0798 -47551 1.96965 ' 1.1606 ~45693 
1.0 2.1381 . 1.2374 e46769 2.2460 1.3395 e44523 )I 
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This on integration ~ubject t o  the initial condition (14) gives 

, c=z.  
For further approximation we put the h t  approximation Z of k on the right hand side 
of (17) and get 

a Z a5 
& [ T ; i i ] = - ~ ( l - k ) .  (20j , 

* 
Integrating subject to initial conditions we have 

z a5 Z 
1 ~ ~ = 1 - M ( Z - Z 0 ) + M 5 , 1 o g  - ,  

20 (21) 

since by (15) 

Integrating (21) and remelnberisg the initid  condition^ we get 

No simple integration for a furaer  approximation is .possible in this manner. To this 
approximation ,we may use (22) t o  determihe 5 as a fbnction of Z .  

equation (23) determines 7 in this approximation as a function d Z. Equation (10) 
also gives 

-. 
So we may take (22) and (24) togethgr to determine E in this approximation as a func- 
tion of Z. Thus in this approximate sclution we may express f ,  s, C as a function of 
Z by (22) to (24). 

N U M E R I C A L - A - N D  A P P R O X I M A T E  S O L U T I O N S  

Here we discuss how (22) to (24) compare with the exact solution found by numerical 
integration. Equations (18) and (16) were integrated numerically with initial conditions 
7 = 0, 5 = to ( = Z,, ) a Z = 2, by -the method of Runge-Kutta in steps 
of Z =  O.O5inthreecasesnamely(a)M = 1, Co=Zo=O.l ,  ( b ) N = 2 ,  &=Zo=O-1,  
(c) M = 1, 5, = Zo = 0.3. The values of t ,  9 and 5 obtained by numerical method 
as also obtained by approximate solution are-given in Tables 1 to 3 in steps of Z = 0.1.  
It is evident that the approximate solution is as good as the numerical solution especially 
when M is in the ~eighbourhood of unity. For large M the difference between the two 
solutions is not quite negligible. 
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For mrtximum pressure we put 

a r a=o 
which by (21) gives 

z 
* 1 - M ( Z - Z 0 ) + M $ l o g - = o .  

2, (25) 

Further differentiating (21) we have 

a2r 

under the condition . a z - 0 .  at ;_  

Hence a2r - d r  - < 0 when dx = 0 . 
d Z 2  

Thus if Zl, the root of'the equation (25) be less than unity, then at Z = Zl the preamre 
will be a maximum and since Z = Zl satisfies (25) wedmust also have 

- 

The maximum pressure r1 will, by (22), (26) and (25), be given by 

log = - 1 $ log 2, $ "20 - (log 2 ) I .  ' (27) 

If, however, Zl be greater than 1 the maximum pressure will occur at all-burnt. 

M U Z Z L E  V E L O C I T Y  ' 
It is well known that 73 ( q at mu2;zle ) is given by 

where suffixes 2 & 3 indicate values st all-burnt and a t  muzzle respectively. 
- 

C O M P A R I S O N  W I Y H  HES * 

Comparison is shown by taking the following concrete examples : (In all the exam- 
ples we have taken Y =1.25, 8=0, B =0-25 where B is the co-volume term in HHS). 

Exampte 1 : , M = l ,  1 3 = 9  

Numerical integration with 5, = 0.1 gives (Table 1) 

' r1 = r2 =0.665 

and 
1 

72 = 0.655, la = 1.504, q3 = 1.820. a I - i 
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For same pmk pressure appro$mate integration giv& :- 

5,' = 0.099, q3-' = 1 827; 

and HHS by H.M.s.o.] Tables gives : 

5~ = 0.213, qsH = 1.821 with dB = 0 0. 02. (dE is- the correction term for muzzle 
velocity in HHS). Thus the .muzzle velocities a$ calculated by (i) numerical integra- 
tiop, (ii) approximate solution and (iii) HHS Tables1, all giving the same peakpressure, 
are 

I 

73 = 1.820, q i  = 1.827 q 3 ~  = 1.821 

The agreement is quite goad. 

EmmpZe 2 : M = 2, g3 = 9 

Numerical integration with &, = 0 1 giva (Table 3) 
C 

_ Approximate solution gives 

&' = 0.108,. a' = 2.555 

HHS gives . 

t;a=Oa232 * 17313 = 2.532 with dE = 0.01. 

The three muzzle velocities to be compared are 

v3 = 2.523, g' = 2.555;- - q31{ = 2.532 

Example 3 : i M = 4, 5, = 32.25 

HHS with cH = 0.1 gives 

TJ~R = 3.670 with dE = 0. 

Approximate solution gives 
4 

I 5; = 0.038, q l  p 4.212 

The two muzzle velocities differ considerably. This is probably due to abnormally large 
t3 and large M which will seldom occur in practice. 

Example 4 : = 0.8, f3  = 4 ,- 

HHS with tH = 0.2 gives 

q8* = 1.348 with dE = 0.02 

Approximate solution gives 

c,,' = 0.18, q,' = 1.346 . 
We take another example to see how exact solution compares with JXHS for large 1M in 
which case approximate solution isno good as seen in Example 3. For this example details 
of numerical integration cannot be given, 
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