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Ballistios calculated with this model gives values for muzzle velocity fairly in agreement with
those given by Hunt-Hinds system. Equations in this model have also been integrated

approximately and the approximate fortulae also are found to give quite good values for
wuzzle velocity. . :

Hunt-Hinds System? (HHS), of internal ballistics is the best of all the existing solu-
tions in this field. It assumes a shot-start pressure, i.e. it is thought that the shot begins
to move only when certain pressure (shot-start pressure) has been developed in the gun.
It appears that it does not takeinto account the hbore resistance. If it does, itis done
by changing the effective: shot-weight which is true only when the resistance is pro-
portional to the pressure. But so far our experimental knowledge goes, the bore resistance:
is seen to be quite different. Now why HHS should be so good even after neglecting or
poorly representing the bore resistance, is a matter of investigation. As an answer to
this we may think that the shot-start pressure actually replaces the whole resistance by

* a concentrated resistance—so tosay—at the initial position of the shot. With this picture
inmind one may ask, whether we can represent the whole resistance by a constant °
resistance spread over—so to say—from shot-start to all burnt and also get the muzzle
velocity in fair agreement with those given by HHS. '

'We have found the answer in the affirmative. We have demonstrated this by cal-
culating the muzzle velocity of orthodox gun by assuming a constant resistance, from
shot-start to all burnt, in the isothermal model after neglecting the co-volume and then

; comparing it with the muzzle velocity given by THHS. Here we must say how the compa-
" rison between the two solutions was made. We must remember that the shot-start
pressure term (g in the HHS is first determined from the recorded peak pressure; then
with this {# the muzzle velocity and other features are calculated. Similarly we have
first found the bore-resistance term Z, from the recorded peak pressure and then with
this ¢, muzzle velocity has been calculated. The two muzzle velocities are found to be in
quite satisfactory agreement when we remember that our calculation is in isothermal
model without the co-volume term. We have integrated our equatiohs-rumerically as
they are, as usual, non-linear and non-integrable. But an approximate solution has
been found which compares favourably with-exact numerical solution for values of M
around unity (M is the central ballistic parameter). This approximate solution alse gives
values for muzzle velocity in good agreement with that in HHS if we first caleulate the
bore-resistance term " (according to the approximate solution)to give therecorded peak
pressure and then calculate the muzzle velocity with this . The approximate solution
is easy to handle, and useful for values of M in the neighbourhood of unity. The whole
 discussion is confined only totubular propellants; but can be easily extended to cover
. quadratic form function and co-volume.
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* " where pa is the pressure a.t the shot-base and AAO is the constant res1stance

and -
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equations” (1 P :
e e ey

@M=L @
Z=1—f; )
and the. initial conditions are now , . / . R

f—l,n—o :-éoatz zo or’ atf jo.

" We note farther tha,t equation (10) glves the 1n_1t1a1 values : - f
: ~ L=t ' e (14
" From (10), (11) and (13) we have L ‘ - i}
| L za
: n=l=vag - S (18)
From (1), (12) and (13) we have ' ' o
dn ¢ RS R
| az =" (1 _ co_) s a8
which by (16) gives B
| z d Ly T
[;dz]—"M (1“‘)2) an

- This is the dlfferentlal equation for: ptessurel; The equa,tmn is non-lmear and can
be integrated numerically which has been done. However, we first give an approximate
solution-of this equation by successive a.pprommatlons e ,

- Since Z =1, 1mtlally, a,s a first a.pprommatlon we put Z = Zo on the rlght hand sude

of (16‘ and get- : ey
E afza o | '
_ Integrating and using (15), we have ' o '
5! Lo Z dt DR : . :
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= Constant =1 (initial value). :
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" Numerical integration . - S R - .Approximate'solution

] ’ RN SR g ,q e
0-1 1-00000 0 - .:10000: S, 1-00000 0 +10000
0-2 - 1-00546 +03782 -19888 Ty » 100648, .+03063 - +19867
0-3 1-03209 +09792 29069 . . ) 1:08026 00014 +29118
. 84 1-07208 . +16769 ¢ a3731r . 1-06736 <16137 -37475
0-5 1:-12175 -243256 . 44572 ¢ ) 1-115875 238906« +44812
06 1-18080 32228 ~50812 i 1-17384 -32082 . -51113
0-7 1-24852 40358 +56065 1-24124 40541 - 56397
0-8 1832488, .. -48641-~ . <60383 Sl e 181960 . +49206 . *60712
0-9 - 1:40985 57032 +63838 ¢ i 1-40211 58028 ©+64191
1-0 1-5087 65499 © +66503 o 14987 66974 66723
TamLe 2

M=1,0="2%=03 .

~oooo0oo”

Numerical integration VR R P Approximate soltition

z £ 7 .- 3 7 0

3 1-00000 0 +30000 1-00000 0 30000
-4 © 1400128 01366 39949 - 1-00128. - -01370 -39948

5 1.00756 +04646 49624 : . 1-00765 - 104675 49620

6 1-02000 -09105 -H8823 ‘ 1-02030 +09206 +58806

T 1-03845 - 14349 67411 - - ¢ 1-03894 .- +14581 - +67380 -
8 1-06240 20144 +75298 1-06336 +20575 75237

9 1-09188 = -26346 +82431 1-09359 <27042 -82206
0 © 1-1263 32837 - 88787 1-1289 -33881 . -88681 . -

"TABLE 8

M= 2,8 = Z, =01

Ho000000R9

Numerical integration ) o " " Approximate solution
-Z ¢ ' & K : o £ e 4

1 100000 . 0 10000 14000000 .. Q- +10000
2 1-01122 +05432 9776 . 1-01338 - 06126 - +19735
3 1-05576 +17085 -28415 1-06149 +18028 - -28263
4 1-12956 - +30754 -36413 . 1-13952 ©32274 ~35102
5 1-22890 +45508 -40687 u 1-24495 - -49812 . -40164
6 1.35330 . -60814 44336 N 1-87796, - 64164 43543
7 1-50374 76423 46549 0 .« 1-54056 +81082 45437
8 1-68256 -92180 CoAT547 T - S 1-73632 ©.98412 46075
9 1-89279 1.0798 47551 1-96965- ¢+ 1-1606 +45693
0

2-1381 - . -1-2374 .. -46769 : 242460 1-3395 44623




Ray #Mazrle Vélosity of ‘Orthodox Gims - g%y

This on integration subject to the 1n1t1a.l condition (14) gives

, £=
: For further a.ppromma.tlon we put the first’ apprommatmn Z of C on the nght hand side
of a7y and get ; ‘
ﬁ[i‘dz]—_—M( “2)', - R
Integrating subject to initial cdnditions we have
: o ZE M(Z—2Z 728 E A
f " ’ ZdZ— ( 0)+ go OcZ 4 ’ ( )
since by (15) ,
Zdg
(EEZ) —(l=m)=1.

Integrating (21) and remem-bei'irfg’thé ini?ciéil cbn‘ditidns we gget
zZ L ZoNe
log ‘ log —M(Z—2Zy)+M Z, log —I—Mc" log =1 . (22) ‘
&y Zy 2 Zy )

No simple integration for a furﬁ]ler apprommamon is possible in this manner, To this
approximation we may use (22) “to- determilie’l as 4 functmn ‘of Z _ -

Since by (15) and 21) , ,
R . o Z - o .
= M(Z—2,)—Mllog 7, (23)

equatlon (23) determines % in this approximation as a functlon of Z. Equation (10)
also gives

VAR ’ o . N ) .
f-=z o (24

So we may take (22) a,nd (24) together to debermme £ in this approximation as a func-
tion of Z. Thus in this apprommate sclution we may express &, m, { as a function of
. Z by (22) to- (24)

NUMERICAL,NA"ND. APPROXIMATE SOLUTIONS

Here we discuss how (22) to (24) compare with the exact solution found by numerical
intégration. Equatlons (15) and (16) were integrated numerically with initial conditions
n=0,0=1§ (= 2%) at Z = Z, by the method of Runge-Kutta in steps
of Z = 0-051n three casesnamely @M =1, {(=2Z4=0-1, (B)M =2,y =2, =01,
() M =1,%=2Zy=0-3. The values of £, 7 and { obtamed by numerical method
as also obtained by approximate solution are given in Tables 1 to 3 in stepsof Z=10-1.
It is evident that the approximate solution is as good as the numerical solution especially
when M is in the neighbourhood of umty For large M the difference between the two
solutions is not quite. negligible.
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MAXIMUM PRESSURE IN APPROXIMATE SOLUTION

' For maximum pressure we put

i
d7 ==
 which by (21) gives e
S T Z)+Mcolog§‘_o @
Further dlfferentlatmg (21) we have |
d2§ ¢ N/
" under the conditi | i@ _y.
under the condition e gz=0. .
- . ) 2 .
Hence R gzi <0 . when gé 0

Thus if Z;, the root of the equation (25) be less than unity, then at Z = Z'1 the pressure
will be & mammum and since Z Z, satisfies (25) we must also have ‘ '

1—~M(Z -_zo)+Mz;olo?—=o e

B

~ The maxrmum pressure Cr W111 by (22) (26) and (25), be glven by
Z.o\% T '
log &y =‘-1+logZ + g°( og —Z—l) o IS - (@2
} 0 ) -
If, however, Z, be greater than 1 the maximum pressure W111 occur at all-burnt.

MUZZLE VELOCITY !
It is well known that g ( 7 at. muzzle ) is given by

where suffixes 2 & 3indicate values at all¥burrrf and at muzzle resprectively.

‘COMPARISON‘ WITH HES

4

.. Comparison is shown by taking the following concrete examples (In all the exam-
ples we have taken ¥=1-25, 6=0, B=0-25 where B is the co-volume term in HHS).

Exqmple 1: M =1 -£(=9 N
_ Numerical integration with {, = 0-1 gives (Table 1)
Z]_ = Zg = O 665 S N

and = 0655, & =1504 . 5, =1.820 oA
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For salim peak ‘pr‘éssur'e’ faﬁprqximatg‘ integration gives I

=009, - nt =182T,
- and HHS by H.M.8.0." Tables gives : - :

v {g = 0-213, ngy = 1-821 with dB = 0-02. (dE is the correction term for muzzle
velocity in HHS). Thus the muzzle velocities as calculated by (i) numerical integra-
tion, (ii)-approximate solution and (iii) HHS Tables!, all giving the same peak pressure,

are : ‘ . o o

‘ -

g =1.820,  n =1827 nog = 1-821
“The agreénj.énﬁ is quite good. | :
Bumple?: M=2 = g=9
", Numerical integration with & =’0:/1/ gives (Table 3) v :
L =0-47T, = 0468, m=1-23T, . &= 2138, " = 2523,
Approximate - solution gives : | . SN
| t =0-108, = g = 2-555
HHS éive& | o C ; o
T g=0282 gy =252 with  dE =0-0L.
The three muzzle velocities to be"’compaired are L
7 = 2:523, g’ = 2-885;~ ~ gy = 2-532
Ezample 3: M= 4, £ = 32:25

HHS with £z = 0-1 gives N

o g = 3-670 with dE = 0,
Approximate solution gives \ . L

; L = 0-038, gy = 4212
The two muzzle velocities differ considerably. This is prﬁbably due to abnormally Iarge
£; and large M which will seldom occur in practice. v '
Hoample 4 : . M =08, g =4 e
HHS with {7 = 0-2 gives o e .
. ngy = 1-348 with dE = 0-02
Approximate sblution gives o
' =018 - g/ =1346.

We take another example to see how exact solution compares with FHS for laﬁrge/M in

which case approximate’solution is no good as seen in Example 3, For this example details
of numerical integration cannot be given, : ) v
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Numerlca.l mtegratmn Wlt]l Zo = 0 @01 gives A ,
HHS gives . ‘ R L :
C cH~0022 oy =2 223 with dE'——o

_The agreement between nmuzzle Velocmes 1s not bad

From these examples it is permlssxble to conqlude that except for large M the 1nternal :
ballistic system with constant -bore resistance, as analysed above and represented by
Tables 1-3 of numerical integration, gives the muzzle velocity in satlsfactory agreement
(Examples 1, 2 & 5) with the values given by HHS, the basis of comparison being the same
value of peak pressure. A very good, correspondence thus exists between the ballistics
with bore resistance developed by us and the ballistics of HHS. Further-onr: ap?mxamate g
formulae are also quite usable, except possibly . for . large M, (Examples 1—4) in
calculatmg the muzzle velocity which is in a.greemenb W‘Lth that of HHS 5
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