# MODEL FOR CALCULATION OF MUZZLE VELOCITY OF ORTHODOX GUNS 

Asim Ray<br>Calcutta Technical School, Calcutta

(Received 15 November 1969)


#### Abstract

Ballistics calculated with this model gives values for muzzle velocity fairly in agreement with those given by Hunt-Hinds system. Equations in this model have also been integrated approximately and the approximate formulae also are found to give quite good values for muzzle velocity.


Hunt-Hinds Systen ${ }^{1}$ (HHS), of internal ballistics is the best of all the existing solutions in this field. It assumes a shot-start pressure, i.e. it is thought that the shot begins to move only when certain pressure (shot-start pressure) has been developed in the gun. It appears that it does not take into account the bore resistance. If it does, it is done by changing the effective shot-weight which is true only when the resistance is proportional to the pressure. But so far our experimental knowledge goes, the bore resistance is seen to be quite different. Now why HHS should be so good even after neglecting or poorly representing the bore resistance, is a matter of investigation. As an answer to this we may think that the shot-start pressure actially replaces the whole resistance by a concentrated resistance-so to say-at the initial position of the shot. With this picture in mind one may ask whether we can represent the whole resistance by a constant resistance spread over-so to say-from shot-start to all burnt and also get the muzzle velocity in fair agreement with those given by HHS.

We have found the answer in the affirmative. We have demonstrated this by calculating the muzzle velocity of orthodox gun by assuming a constant resistance, from shot-start to all burnt, in the isothermal model after neglecting the co-volume and then comparing it with the muzzle velocity given by HHS. Here we must say how the comparison between the two solutions was made. We must remember that the shot-start pressure term $\zeta_{H}$ in the HHS is first determined from the recorded peak pressure; then with this $\zeta_{H}$ the muzzle velocity and other features are calculated. Similarly we have first found the bore-resistance term $\zeta_{0}$ from the recorded peak pressure and then with this $\zeta_{0}$ muzzle velocity has been calculated. The two muzzle velocities are found to be in quite satisfactory agreement when we remember that our calculation is in isothermal model without the co-volume term. We have integrated our equations numerically as they are, as usual, non-linear and non-integrable. But an approximate solution has been found which compares favourably with exact numerical solution for values of $M$ around unity ( $M$ is the central ballistic parameter). This approximate solution also gives values for muzzle velocity in good agreement with that in HHS if we first calculate the bore-resistance term $\zeta_{0}{ }^{\prime}$ (according to the approximate solution) to give the recorded peak pressure and then calculate the muzzle velocity with this $\zeta_{0}{ }^{\prime}$. The approximate solution is easy to handle, and useful for values of $M$ in the neighbourhood of unity. The whole discussion is confined only to tubular propellants; but can be easily extended to cover quadratic form function and co-volume.

BURNING EOUATIONS:APPROXIMATESOLUTION With notations used in $\mathrm{HHS}^{1}$, the basic equations for this model are

$$
\begin{align*}
& F C Z=A p(x+l)  \tag{1}\\
& D \frac{d f}{d t}=-\beta p,  \tag{2}\\
& \omega v \frac{d v}{d x}=A p_{\alpha}-A A_{0} \tag{3}
\end{align*}
$$

where $p_{s}$ is the pressure at the shot-base and $A A_{0}$ is the constant resistance and

$$
Z=1-f
$$

The initial conditions are

$$
x=0, v=0, p=p_{0}, Z=Z_{0} \text { at } f=f_{0} .
$$

Considering the instant of shot-start, from (3) it follows that

$$
A\left(p_{s}\right)_{0}=A A_{0} .
$$

So by Lagrange's correction namely

$$
p_{s}=\frac{p}{1+\frac{C}{3 \omega}}
$$

we have

$$
A A_{0}=A\left(p_{s}\right)_{0}=\frac{A p_{0}}{1+\frac{C}{3 \omega}}
$$

Therefore equation (3) can now be written as

$$
\left(\omega+\frac{1}{3} C\right) v \frac{d v}{d x}=A\left(p-p_{0}\right),
$$

and modifying the shot-mass as in HHS we have-

$$
\begin{equation*}
\omega_{1} v \frac{d v}{d x}=A\left(p-p_{0}\right) \tag{4}
\end{equation*}
$$

where

$$
\omega_{1}=1 \cdot 05 \omega+\frac{1}{3} C .
$$

Now with the following usual substitutions

$$
\begin{align*}
& \zeta=1+\frac{x}{l},  \tag{5}\\
& \eta=\frac{v A D}{\bar{F} \bar{\beta}},  \tag{6}\\
& \zeta=\frac{p A l}{\overline{F C}},  \tag{7}\\
& \zeta=\frac{p_{0} A l}{\overline{F C}}, \tag{8}
\end{align*}
$$

$$
\begin{equation*}
M=\frac{A^{2} D^{2}}{F C \beta^{2} \omega_{1}}, \tag{9}
\end{equation*}
$$

equations (1) to (4) reduce to

$$
\begin{align*}
Z & =\zeta \xi  \tag{10}\\
\eta \frac{d f}{d \xi} & =-\zeta  \tag{11}\\
\eta \frac{d \eta}{d \xi} & =M\left(\zeta-\zeta_{0}\right)  \tag{12}\\
Z & =1-f ; \tag{13}
\end{align*}
$$

and the initial conditions are now

$$
\xi=1, \eta=0, \zeta=\zeta_{0} \text { at } Z=Z_{0} \text { or at } f=f_{0}
$$

We note further that equation (10) gives the initial values

$$
\begin{equation*}
Z_{0}=\zeta_{0} \tag{14}
\end{equation*}
$$

From (10), (11) and (13) we have

$$
\eta=\zeta \frac{d \xi}{d Z}=\zeta \frac{d}{d Z}\left(\frac{Z}{\zeta}\right)
$$

or

$$
\begin{equation*}
\eta=1-\frac{Z}{\zeta} \frac{d \zeta}{d Z} \tag{15}
\end{equation*}
$$

From (11), (12) and (13) we have

$$
\begin{equation*}
\frac{d \eta}{d Z}=M\left(1-\frac{\zeta_{0}}{\zeta}\right) \tag{16}
\end{equation*}
$$

which by (15) gives

$$
\begin{equation*}
\frac{d}{d Z}\left[\frac{Z}{\zeta} \frac{d \zeta}{d Z}\right]=-M\left(1-\frac{\zeta_{0}}{\zeta}\right) \tag{17}
\end{equation*}
$$

This is the differential equation for pressure $\zeta$. The equation is non-linear and can be integrated numerically which has been done. However, we first give an approximate solution-of this equation by successive approximations.

Since $\zeta=\zeta_{0}$ initially, as a first approximation we put $\zeta=\zeta_{0}$ on the right hand side of ( $16^{\wedge}$ and get

$$
\begin{equation*}
\frac{d}{d Z}\left[\frac{Z}{\zeta} \frac{d \zeta}{d Z}\right]=0 \tag{18}
\end{equation*}
$$

Integrating and using (15), we have

$$
\begin{align*}
\frac{Z}{\zeta} \frac{d \zeta}{d Z} & =1-\eta  \tag{19}\\
& =\text { Constant }=1 \text { (initial value) } .
\end{align*}
$$

Taplé 1
$M=1, \zeta_{0}=Z_{0}=0.1$

| 2 | Numerical integration |  |  | Approximate solution |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\xi$ | $\eta$ | 6 | $\xi$ | $\eta$ | $\zeta$ |
| 0.1 | 1.00000 | 0 | . 10000 | 1.00000 | 0 | -10000 |
| $0 \cdot 2$ | 1.00546 | . 03782 | - 19888 | 1.00648 | . 03063 | - 19867 |
| $0 \cdot 3$ | 1.03209 | - 09792 | - 29069 | 1.03026 | -09014 | - 29118 |
| $0 \cdot 4$ | 1.07208 | $\cdot 16769$ | $\bigcirc 37317$ | 1.06736 | -16137 | - 37475 |
| 0.5 | 1-12175 | - 24325 | $\checkmark 44572$ | 1.11575 | -23906 | - 44812 |
| 0.6 | 1.18080 | - 32228 | - 50812 | 1.17384 | - 32082 | . 51113 |
| 0.7 | $1 \cdot 24852$ | -40358 | $\cdot 56065$ | $1 \cdot 24124$ | - 40541 | - 56397 |
| $0 \cdot 8$ | 1.32488 | -48641 | $\bigcirc 60383$ | $1-31760$ | - 49206 | - 60712 |
| $0 \cdot 9$ | $1 \cdot 40985$ | . 57032 | -63838 | 1.40211 | -58028 | -64191 |
| $1 \cdot 0^{-}$ | 1.5037 | -65498 | -66503 | $1 \cdot 4987$ | -66974 | -66723 |

Table 2

$$
M=1, \zeta_{0}=Z_{0}=0.3
$$

| $z$ | Numerical integration |  |  | Approximate solution |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\xi$ | $\eta$ | $\zeta$ | $\xi$ | $\eta$ | $\zeta^{4}$ |
| $0 \cdot 3$ | $1 \cdot 00000$ | 0 | -30000 | 1.00000 | 0 | . 30000 |
| $0 \cdot 4$ | 1.00128 | - 01366 | -39949 | 1.00128 | .01370 | - 39948 |
| 0.5 | 1.00755 | .04646 | . 49624 | 1.00765 | . 04675 | . 49620 |
| $0 \cdot 6$ | 1.02000 | . 09105 | - 58823 | 1.02030 | -09206 | - 58806 |
| $0 \cdot 7$ | 1.03845 | - 14349 | . 67411 | 1.03894 | $\cdot 14581$ | - 67380 |
| 0.8 | 1.06240 | -20144 | -75298 | 1.06336 | - 20575 | -75237 |
| 0.9 | 1.09188 | - 26346 | . 82431 | 1.09359 | . 27042 | . 82296 |
| 1.0 | $1 \cdot 1263$ | - 32837 | . 88787 | 1-1289 | $\cdot 33881$ | -88581 |

> TABLE 3
> $M=2, \zeta_{0}=Z_{0}=0.1$

|  | Numerical integration |  |  | Approximate solution |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z | $\xi$ | $\eta$ | $\zeta$ | $\xi$ | $\eta$ | $\zeta$ |
| $0 \cdot 1$ | 1.00000 | 0 | . 10000 | 1.00000 | 0 | -10000 |
| 0.2 | 1.01122 | . 05432 | - 19776 | 1.01338 | . 06126 | -19735 |
| $0 \cdot 3$ | 1.05576 | - 17085 | - 28415 | 1.06149 | -18028 | . 28263 |
| $0 \cdot 4$ | 1-12956 | - 30754 | - 35413 | $1 \cdot 13952$ | - 32274 | $\cdot 35102$ |
| 0.5 . | $1 \cdot 22890$ | -45508 | - 40687 | $1 \cdot 24495$ | -47812 | - 40164 |
| $0 \cdot 6$ | 1.35330 | - 60814 | $\cdot 44336$ | 1.37796. | -64164 | - 43543 |
| $0 \cdot 7$ | 1.50374 | - 76423 | - 46549 | 1.54056 | . 81082 | - 45437 |
| $0 \cdot 8$ | 1.68256 | . 92180 | -47547 | 1.73632 | - 98412 | - 46075 |
| $0 \cdot 9$ | 1.89279 | $1 \cdot 0798$ | -47551 | 1.96965 | 1.1606 | . 45693 |
| 1.0 | $2 \cdot 1381$ | $1 \cdot 2374$ | -46769 | $2 \cdot 2460$ | $1 \cdot 3395$ | -44523 |

This on integration subject to the initial condition (14) gives

$$
\zeta=Z
$$

For further approximation we put the first approximation $Z$ of $\xi$ on the right hand side of (17) and get

$$
\begin{equation*}
\frac{d}{d Z}\left[\frac{Z}{\zeta} \frac{d \zeta}{d Z}\right]=-M\left(1-\frac{\zeta_{0}}{Z}\right) \tag{20}
\end{equation*}
$$

Integrating subject to initial conditions we have

$$
\begin{equation*}
\frac{Z}{\zeta} \frac{d \zeta}{d Z}=1-M\left(Z-Z_{0}\right)+M \zeta_{0} \log \frac{Z}{Z_{0}} \tag{21}
\end{equation*}
$$

since by (15)

$$
\left(\frac{Z}{\zeta} \frac{d \zeta}{d Z}\right)_{0}=(1-\eta)_{0}=1
$$

Integrating (21) and rememberirg the initial conditions we get

$$
\begin{equation*}
\log \frac{\zeta}{\zeta_{0}}=\log \frac{Z}{Z_{0}}-M\left(Z-Z_{0}\right)+M Z_{0} \log \frac{Z}{Z_{0}}+\frac{M \zeta_{0}}{2}\left(\log \frac{Z}{Z_{0}}\right)^{2} . \tag{22}
\end{equation*}
$$

No simple integration for a furfher approximation is possible in this manner. To this approximation we may use (22) to determine $\zeta$ as a function of $\mathbb{Z}$.

Since by (15) and (21)

$$
\begin{equation*}
\eta=M\left(Z-Z_{0}\right)-M \zeta_{0} \log \frac{Z}{Z_{0}}, \tag{23}
\end{equation*}
$$

equation (23) determines $\eta$ in this approximation as a function of $Z$. Equation (10) also gives

$$
\begin{equation*}
\xi=\frac{Z}{\zeta} \tag{24}
\end{equation*}
$$

So we may take (22) and (24) together to determine $\xi$ in this approximation as a function of $Z$. Thus in this approximate solution we may express $\xi, \eta, \zeta$ as a function of $Z$ by (22) to (24).

## NUMERICALAND APPROXTMATESOLUTIONS

Here we discuss how (22) to (24) compare with the exact solution found by numerical integration. Equations (15) and (16) were integrated numerically with initial conditions $\eta=0, \zeta=\zeta_{0}\left(=Z_{0}\right)$ at $Z=Z_{0}$ by the method of Runge-Kutta in steps of $Z=0.05$ in three cases namely (a) $M=1, \zeta_{0}=Z_{0}=0.1$, (b) $M=2, \zeta_{0}=Z_{0}=0.1$, (c) $M=1, \zeta_{0}=Z_{0}=0 \cdot 3$. The values of $\xi, \eta$ and $\zeta$ obtained by numerical method as also obtained by approximate solution are given in Tables 1 to 3 in steps of $Z=0 \cdot 1$. It is evident that the approximate solution is as good as the numerical solution especially when $M$ is in the neighbourhood of unity. For large $M$ the difference between the two solutions is not quite negligible.

MAXIMUMPRESSUREINAPPROXIMATESOLUTION For maximum pressure we put

$$
\frac{d \zeta}{d Z}=0
$$

which by (21) gives

$$
\begin{equation*}
1-M\left(Z-Z_{0}\right)+M \zeta_{0} \log \frac{Z}{Z_{0}}=0 \tag{25}
\end{equation*}
$$

Further differentiating (21) we have

$$
\frac{d^{2} \zeta}{d Z^{2}}=-\frac{\zeta}{Z^{2}}\left(1+M \zeta_{0} \log \frac{Z}{Z_{0}}\right)
$$

under the condition

$$
\frac{d \zeta}{d Z}=0
$$

Hence

$$
\frac{d^{2} \zeta}{d Z^{2}}<0 \quad \text { when } \frac{d \zeta}{d Z}=0
$$

Thus if $Z_{1}$, the root of the equation (25) be less than unity, then at $Z=Z_{1}$ the pressure will be a maximum and since $Z=Z_{1}$ satisfies (25) we must also have

$$
\begin{equation*}
1-M\left(Z_{1}-Z_{0}\right)+M \zeta_{0} \log \frac{Z_{1}}{Z_{0}}=0 \tag{26}
\end{equation*}
$$

The maximum pressure $\zeta_{1}$ will, by (22), (26) and (25), be given by

$$
\begin{equation*}
\log \zeta_{1}=-1+\log Z_{1}+\frac{M \zeta_{0}}{2}\left(\log \frac{Z_{1}}{Z_{0}}\right)^{2} . \tag{27}
\end{equation*}
$$

If, however, $Z_{1}$ be greater than 1 the maximum pressure will occur at all-burnt.
MUZZLE VELOCITY

It is well known that $\eta_{3}$ ( $\eta$ at muzzle) is given by

$$
\begin{equation*}
\eta_{3}^{2}=\eta_{2}^{2}+\frac{2 M}{\gamma-1}\left[1-\left(\frac{\xi_{2}}{\xi_{3}}\right)^{\gamma-1}\right] \tag{28}
\end{equation*}
$$

wheresuffixes $2 \& 3$ indicate values at all-burnt and at muzzle respectively.

## OOMPARISON WITH HHS

Comparison is shown by taking the following concrete examples: (In all the examples we have taken $\gamma=1 \cdot 25, \theta=0, B=0.25$ where $B$ is the co-volume term in HHS).

Example 1 :

$$
M=1, \quad \xi_{3}=9
$$

Numerical integration with $\zeta_{0}=0.1$ gives (Table 1)

$$
\zeta_{1}=\zeta_{2}=0.665
$$

and

$$
\eta_{2}=0.655,
$$

$$
\dot{\xi}_{2}=1.504, \quad \eta_{3}=1.820
$$

For same peak pressure approximate integration gives

$$
\zeta_{0}^{\prime}=0.099, \quad \quad \eta_{3}^{\prime}=1.827,
$$

and HHS by H.M.S.O. ${ }^{3}$ Tables gives :
$\zeta_{H}=0.213, \eta_{3 H}=1.821$ with $d E=0.02$. ( $d E$ is the correction teim for muzzle velocity in HHS). Thus the muzzle velocities as calculated by (i) numerical integration, (ii) approximate solution and (iii) HHS Tables¹, all giving the same peak pressure, are

$$
\eta_{3}=1.820, \quad \eta_{3}{ }^{\prime}=1.827 \quad \eta_{3 H}=1.821
$$

The agreement is quite good.
Example 2 :

$$
M=2, \quad \xi_{3}=9
$$

Numerical integration with $\tau_{0}=0 \cdot 1$ gives (Table 3)
$\zeta_{1}=0.477, \quad \quad \zeta_{2}=0.468, \quad \eta_{2}=1.237, \quad \xi_{2}=2.138, \quad \eta_{3}=2.523$.
Approximate solution gives

$$
\zeta_{0}^{\prime}=0.108, \quad \eta_{3}^{\prime}=2.555
$$

HHS gives

$$
\zeta_{H}=0.232 \quad \eta_{3 H}=2.532 \quad \text { with } \quad d E=0.01 .
$$

The three muzzle velocities to be compared are

$$
\eta_{3}=2.523, \quad \eta_{3}^{\prime}=2.555, \quad \eta_{3 I}=2.532
$$

Example 3: $\quad M=4, \quad \xi_{3}=32 \cdot 25$
HHS with $\zeta_{H}=0.1$ gives

$$
\eta_{3 H}=3 \cdot 670 \text { with } d E=0
$$

Approximate solution gives

$$
\zeta_{0}^{\prime}=0.038, \quad \eta_{3}^{\prime}=4.212
$$

The two muzzle velocities differ considerably. This is probably due to abnormally large $\xi_{3}$ and large $M$ which will seldom occur in practice.
Example 4 :

$$
M=0 \cdot 8, \quad \xi_{3}=4
$$

HHS with $\zeta_{H}=0.2$ gives

$$
\eta_{3 H}=1.348 \text { with } d E=0.02
$$

Approximate solution gives

$$
\zeta_{0}^{\prime}=0 \cdot 18, \quad \eta_{3}^{\prime}=1 \cdot 346 .
$$

We take another example to see how exact solution compares with HHS for large $M$ in which case approximate solution is no good as seen in Example 3. For this example details of numerical integration cannot be given.

Example 5 :

$$
M=4, \quad \zeta_{3}=9
$$

Numerical integration with $\zeta_{0}=0.001$ gives

$$
\zeta_{1}=0.113, \quad \eta_{3}=2.378
$$

HHS gives

$$
\zeta_{H}=0.022, \quad \eta_{8 B}=2.223 \text { with } d E=0 .
$$

The agreement between muzzle velocities is not bad.
From these examples it is permissible to conclude that except for large $M$ the internal ballistic system with constant bore resistance, as analysed above and represented by Tables 1-3 of numerical integration, gives the muzzle velocity in satisfactory agreement (Examples 1,2\&5) with the values given by HHS, the basis of comparison being the same value of peak pressure. A very good correspondence thus exists between the ballistics with bore resistance developed by us and the ballistics of HHS. Further our approximate formulae are also quite usable, except possibly for large $M$ (Examples 1-4) in calculating the muzzle velocity which is in agreement with that of H.HS,

## ACKNOWLEDGEMENT

The author gratefully remembers the suggestions and criticisms of Late Prof. N. R. Sen during the preparation of this paper and acknowledges with thanks the facilities enjoyed by him at the Seminar organised under the research scheme of National Professor S. N. Bose at the Indian Association for the Caltivation of Science, Jadavpur.

## RETERENCE

1. H.M S.O. - Internal Ballistics, (1951).
