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The unsteady flow of Bingham plastic between two fixed coaxial ‘cylinders under time
dependent pressure fg‘mdient; has been discussed. It is found that the flow is possible in' the’
whole of the region for the small interval of time. The solution is obtained in terms of
Bessel function and the results are presented graphically.

‘We consider the unsteady flow of .the material which can support a finite stress
elastically without flow and which flows with a constant plastic fluidity (mobility) when
the stresses are sufficiently great. Following Bingham! and Houwink? such a material
is called “Bingham plastic”’. Oldroyd® has formulated the constitutive equations for
such a material. The problems of unsteady rectilinear plastic flow between parallel planes
and through a pipe of circular section were studied by Oldroyd:. Recently Paria’
investigated the rotatory flow, both steady and unsteady, between coaxial circular
cylinders of moving boundaries. We have® studied- the unsteady flow-.of Bingham
plastic between two eccentric circular cylinders and confocal elliptic cylinders. -

In this paper the unsteady flow of Bingham plastic between two fixed coaxial cylinders
under time dependent pressure gradient has been studied. We consider the case when
whole region is in motion. - It is found that such a motion is possible for a small interval
of time and as the time increases to infinity the velocity becomes constant.

STATEMENT OF THE PROBLEM AND BOUNDARY CONDITIONS
We consider the unsteady flow of Bingham plastic between two fixed coaxial cylinders
of radii ¢ and b (b > a). Let us assume that initially the material is at rest and the flow
is caused under the influence of a pressure gradient which is a suitable function of time.
We select the cylindrical coordinates (r, 6 , 2), z-axis coinciding with the common axis
of the cylinders. Let w, , uy and u; be the components of the velocity in the direction
of 7 , 6 and # respectively, then by symmetry u, =0, uy = 0 while u. is independent
of 6 and # but function of r and ¢ , i.e. wz = u ( , ¢). Let the pressure gradient be
; 1 o
| = 2 - ro U8
The botindary conditions are )
u=0 r=ua0
t>0 @
w =0 7 = b
and the initial conditions are
u==0att =20

FUNDAMENTAL EQUATION
The rheological equations of state? are :
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where 7, is the (constant) reclpr()cal mobllity, Y is the (constant) yield value, p is the
(constant) rigidity modulus in the elastic region and « (not necessarily constant) is the
bulk modulus, whereas «;; is the strain tensor, eij is the rate of strain temsor, A = <;
1is the delatation, p’;; is the stress tensor. The primes denote the deviatoric components of
tensor, i.e. : v )

P 1 o

P = pik + P, p=— 5 Pi : (6)

8;; being substitution tensor. o

. The elastic region is treated as rigid and the transition conditions to be satisfied on
the yield surface are :

(i) The velocity must be continuous.
(ii) €'; must vanish identically.

The equations of motion and continuity are.
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whete w; is the velocity vector; X i8 the external force vector, p is‘thé dehsity and % ‘

denotes the differentiation with respeot to time following the material partlcle We also
have

ej = 5 (wipg + wjn‘) ) ts)]
. The above equations with appropriate boundary condmons on stresses, veloclty and
pressure determine the velocity fields _
SOLUTION OF THE PROBLEM

We assume the velocity components in the cylindrical coordmates (r 0 z) to be
w. =0, ua—O Ug = ur, 8 v

1 .
where « is the function of r and ¢ and pressure gradient v —ag— = P (t). The non-

vanishing component of rate of strain tensor is found to be

: 1 ou | »
e = er = G- . (,9)'
The oorrespondmg component of s‘oress tensor is given by
Ye,z

pr“ = P = 271613 + - l z‘ ‘ ) (10)
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if &6 is assumed to be positive every where in the flow region,

P = D = Tmep + ¥ ; (i)
* The equation of eentmuity is satisfied identieally if p is taken as tonstant whﬂe in #bsehoe
of body forces the equation of motion reduces to - L I
P2 OB __1_,[1 s 9
t
: -1 ap
Let us take - = P @) = Qe at (say) (€ > 0)

where @ and « are constants,
Then equation (12) becomes .
% 1 ou 1 su P Yy 1

o T T e Ty w T v o T a3
whete v=771/p
| \ ®

The Laplace transform @(r,l) = J. w(r,t)exp(—1¢ t)dt of (13) and(2) reduces

the problem to the solutlon of the dlfferentlal equation

\ 2y 1 da _ Py Y 1
Rl At iy S a4
where ‘ = 7
with the boundary conditions '
% =0 for r = a (internal) X
) ) - e (18)
% =0 for"r = b (external)
— & —0t 3 — {8 —at / Q
i P@-= PO &= | -
an <r>,,%fe Ou=9 [0 -

The solution of (14) can be taken’ as -
i 0 P Y —s2_ '
B= O @)+ OBy @) — T g L@ (9

where Io (gr) and K, (gr) are the modified Bessel functions of first and second kind res-
pectively of zero order and L, () is the modified Struve function of zeroth order.

Now using the boundary conditions (15) we have , S

0 — P(y) [ Ky @) — K, (¢9) ]__ mY “3/2[ I-‘o(qb)Lo(W)“‘I‘o(qa)Ko(qb)]
1= 77 | oK@ LK@ | T 2, 1,(00) Ko D)L (g5 Kofg9)

0, = _:G_)[ L (99) — X, (gd) ] Y —3/2[ Lo(95)Xy(92)—Li(g2)o(gb) ]

2T | ) Eo(eh)—L(ah)Ko(ga) | T 24/n,p Ty(92)K(9b)—X,(gb)Ko(g0)
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Y =9 [ L Ly (ga) Ky (h) — Ly (g0) Ko (g9) } Ty )
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Hence by the theorem of Inversion®
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EVALUATION OF THE COMPLEX INTEGRAL

v is choosen such that it is greater than the real part of all singularities of the integ-
rand in (18). In the first part of (18), the integrand is a single valued function of A and
has-pole at A =0 and A = — « (a pole of order one) and the other poles are the
zeros of the denominator. To find these zeros put A = — w82, then it becomes . ‘

T, (af) Ky (58) — 1, (1) Ky (8) —— 5 { (o) Yo (09)— 3 0B) ¥, (o9) )
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Letgy, By -..... B, be the roots of the equation - ' _
J; (9B) Y, (bB) — Jo (bB) Yo (“/3) —0 : (19).

Then the zeros are

=~—-—vﬁ1,—vﬁz,‘ ........ , — B2
These are the simple poles of the mtegrand

" Hence by Cauchy’s theorem of remdue, we obtain .
Y Qe--at ./ .
“ .
Tolr( oc/v [ ¥o{a( (afv) }—Yo{b(oc/v 3 —Yo{r(x/v)}[J, {a(afv) i}_Jo{b(a/,,)}}] 4
[1+ o {a (afv)i} Yo {b (/)3 — Ty {b(a/r)}} ¥, {a (ar)t}
. - —vpPst
S e L L@ T8 | o B
b D T 38R — 7 08 [ To (8. ’LY" 08) ~ Yo aB) }
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—vom { 3008 — B @) }]+
3, (a8) Jo (0B,) e o B
5 (aB) — T OB [ To (5. { Hy (af) Yo (b8) — Hy(b8) Yo (aB) }
_y, (rpa){ H, (a6) o (58) — Hy (48 3 (aB) }] +
log — + blog — ] ,
Y @ 10g _ e, 1 ! N 20)
T -log —d— J 4

NUMERICAL VALUES
. . ; Y
For the simplification of (20) we choose Q= - Also we put '
of, = ¢, , vifa® =7, aaPfv = ¢ - (21)
. o dimensionless iti 0 be writt
To introduce the?e d1mens1on1ess quantities (21), (20) may be v;m en as

—_— ; J
% e
Yafy, ¢
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In Fig 1, has been Eogmm wmm_nmﬁ
. .xa\f
. Tforr—-02,9=1, 0 =2 and 4,
¥ a i e . .
00f5 T geuwvrrowry _ 1,2,.....are the roots of _
0.0030 @ .
 awoed 5, (4) Yo ?i 1i i_s (4) =0
I a0o90 This shows that the flow is possible in the
aoizok whole of the region towards-theaxis and the
velocity decreases as the timeincreases and
Fig. Hl<&weé was_?sou for different  ° yltimately it becomes constant as ¢ tends
velues of rja " to infinity. The velocity is maximum between
L —17and L =18
a a
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