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A closed form solution of the Navier-Stokes equationa has been obtained in the cage of
gteady axisymmetric flow of an incompressible electrically conducting viseous fiuid
hetween two concentric rotating eylinderscompoesed of an insulating material  under the
influence of radial magnetic field. It haa been fotind that the velocity components are less than
‘those of the elassical hydrodynamic cage. In the presence of the magnetie fleld, the
tangentisl velooity becomes fully developed in a smaller axisl distance than in the absence of
the magnetio field. For small Reynolds num”her, the fully developed tangential velocity
ja achieved in a smaller axial distamce, but it reqmres greater axml distance for large
Reynolds numiber. .

The flow and the heat transfer phenoména in the hydroma,gnetic flow between two
rotating non-conducting cylinders have been studied by Ramamoorthy® and Jagadeesan?,
The method of predicting the growth of a tangenfial velocity profile in fully developed
incompressible steady laminar viscous axial flow through two coaxial cy]mders when the
inner surface is rotating, has been described by Astill et al®.

In this paper, the above method is used to predict the growth of a tangentla,l velocity
profile in fally developed steady incompressible electrically conducting viscous axial fluid
flow between two concentric rotating cylinders composed of ani insulating material under the
influence of a uniform radial magnetioc field. It is assumed that the magnetic Reynolds
number and Hall parameters are small and the driduced magnetio field produced by the
motion of the electrically conducting fluid is negligible. It is also assumed that there is no
separation of charges and the surface of the body is not charged so that the electric field
E = 0. The axial pressure gradient is prescribed and the oylinders are rotated at speeds -
which are insufficient to generate Taylor vortices. The tangential velocity profile generated
in & viscous fluid by the rotating cylinders-in the absence of vortices becomes a function
of the axial coordinate when an axial velooity is superimposed, whether or not itis fully
. developed®, However - the existence of a fully developed axial velocity profile at entry to
the rotating section has been confirmed by experimeénts®. In a sufficiently long annulus, the
tangential profile subsequently approaches the fu]ly developed state when it becomes
independent of axial position®, -

FTORMULATION OF THE- PROBLEM AND FUNDAMENTAL
EQUATIONS

Consider the steady flow of an incompressible electrically conducting viscons fluid
‘between two concentric rotating non-conducting cylinders of radil ¢ and b (b > a} under

'bhe influerice of radial magnetic field B, = :74 , where B, is the magnetic induction in

sdirection, 4 is a constant and r is the radial distance from the axis of the cylinder, Such
a field can be produced by passing a steady current parallel to the axis of the coaxial cylin-

/@41 as shown in Fig, 7+10-1 of reference 4 where the cylinders terminate at perfect electro-
des which are connected through a loads,  Another method to obtain an approximation
%0 the desired field is by the use of o _permeable core within the annulys and a permeable
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cylinder shell outside the annulus, The flux lines would close through these permeable
- paths at long distances from the region of interest. The source of the flux could be dises of “~
permanently magnetlzed material between the permeable paths and the annulus chanuel®,
Assume that the two cylinders, which are sufficiently long, rotate inthe same direction
with angular velocities w, and w, respectively. Following Rossow®, it is assumed that
the induced magnetic field is small and hence it can be neglected

 The Navier-Stokes equafcmns in cylindrical coordinates for steady lammar viscous
axisymmetrie fully developed incompressible conducting fluid flow with radlal magnetic
field in the absence of body forces and induced magnetic field are 3 *: ;

pYg _2p o
r ar - ) M
6 !‘_ Ug azug) \ ouoB_,z,, -

" ( v ) - @)

1, ‘ ,
1 (auz lauz)__-cB, Uz @)
p 2 Br¥ r ar p .
2 (rB)=0 (4)

where ¥y , u, are tangential and axial veloeity components respectively, p and p are density
- and static-pressure respectively, » is kinematic viscosity and o is electrical conductivity.
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From equation (4), B, is proportional to ; and since at r = a, B, = — it follows*

that B, = ~ Introduce dlmens;onless variables as follows :
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where B, is the characteristic magnetic induction, H, is the Hartmann number, g is
the viscosity, R, is Reynolds number and 8]9 is the axial pressure gra,dmm-, which i is
‘supposed to be prescribed. - - 8 r

‘The equations (1) — (3) can be expressed in non-dimensional fox;m as s
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SOLUTION OF THE PROBLEM

For a fully developed steady viscous flow with ax;s,l pressure gradlent thxough an, mﬁ-

nitely long concentric rotatmg cyhnders, the Nav1er-Stokes equations - admlt a steady

solut1on of the form”.8 : DR o
o =0, = V(R), iz = W(R),-al" & constm‘

o~

where V and W are functlons of R only. Hence the solution-of equatwn (7 ) for fully deve-
loped axial ﬂow with boundary conditions given by equation (9), can be expressed as: :
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For the fully developed tangentlal Veloclty proﬁle gy, the equatwn (6) reduces to :
a2
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' The boundary cond1t10ns given by equatlon (8) are reduced to : ; o

. 'The solution of equatlon (12) w1th boundary condmons glven by equatlon (13) can
: be written as:

G — OB+ DEF - R a9
where - : : | |
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. Usmg the difference: procedure of Sparrow & Lin®, assume that g = 'u" - 'uo
where #ig, matches @g, at 7 = 0, and decays to zero when z - 0. Substltutmg for
g from above in equation (6) ‘and replacmg the fully developed axial veloc1ty Uz by
. its mean value ( % )m we get : ' - .
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‘which is subject to the boundary conditions : h
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The solution of equatnon (16) with the boundary conditions given by equation

(16 b, ¢, d) can be expressed as®: , ‘ v
) , . v . v L ) _ ‘
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Jp and. YB are Bth order Bessel functions of the ﬁfst and second kinds respectively
and 4, is constant. The characteristic equatlop for the determlnatlon of the separation

constant k, is expressd as:
Jp () Yg- OF) — Jp (AR) Yp (k) = O (18)

where %, is the wth positive root of the above equatlon The coéfﬁclent An is determined
in such a manner that the remaining boundary condition (16a) is satisfied. From equations
(14) and (17), using the boundary condition (16a) and the orthogonal properties of Bessel %
functions, 4, can be expressed as'‘: \ . ) /
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tangentlal velocity @, can be expressed as :

’
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Equatmg (1) can be integrated numerieally. From equatmns (14) and (17), the

~CRB+ DRB — 'zlA,. [ @ (aR) ] exp (T —~8: (20

DISCUSSION OF RESULTS

For small Reynolds number ot for small L, (-

L
5 — Sp)Z = == kg %, a.ndfor

large Reynolds number or for large L, (—I—L —8Su)z > — kn? z/L Jy increases with

- Hartmann number H, a
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Fig. 1-Velocity distributions.

v o developed tangentml velocity #ig, increases as

Therefore for small Reynolds number, the fully developed-

tangential velocity is achieved in a smaller
axial length, but it requires greater axial
length for large Reynolds number, The axial
distance in which the tangential velocity be-

‘comes fully developed decreases as Hartmani

number increases. The fully developed tan-
gential velocity g, and the fully developed
axial velocity #, are givenin Fig, 1, The fully

N mcreases, but it decreases as Hartmann
number H, increases. Similarly it is evident
from equa,tlon (10) and Fig. 1 that the axial
velocity increases as Reynolds number or
axial pressure gradient increases, but decrea-
ses as Hartmann number H,, increases. In
the absence of the magnetic field all the
equations tend to classwal bydrodynamie
equations,

CONCLUSIONS

The effect of the imposition of the applied magnetic field is to decrease the velocity
field. In the presence of magnetic field, the tangential .velocity becomes fully developed
at a smaller axial distance than in the absence of the magnetic field.
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