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A absed form solution of the Navier-Stokes equations has been obtained in the oase of 
steady sxisymmetrio flow oi an incompressible eleotrioally conducting ~isoous iluid 
between two oonoentric rotating aylindws oom-d of an insulating materinl under the 
influence of radial magnetic field. I t  has been found that $he velocity components are leas t h m  
'those of the dassiosl hydrodynamic case. In, the presence of the ml~gnetio field, the 
tmgentisl velooity beoomes fully de?elop~a in s. smallsr axial distanoe than in the absence of 
the magnetic field. Ror small c&ynold* nurn%er, the fully dewelope3 tangentisl velocity 
is aohioved in a smaller axial distdnce, but it requires greater axial distance for Large 
Reynolds number. 

The flow and the heat transfer phenomena in the hydromagnetic flow between two 
rotating non-conducting oyiinders have been atudied. by Ramamoorthyl and Jagadeesana. 
The method of predicting the growth oTa tangential velocity profile in fully developed 
incompressible steady laminar viemus axial flow thmugh two coaxial cylinders when the 
inner surface is rotati*, has been desoribed by Astill et a13. 

. ~ 

In this paper, the above method is used to predict the growth of a tangential velocity 
profile in fully developed steady incomprepaible electrically conducting ~&cous axial fluid 
flow between two ooncent;ric rotating cylin&rs &mpos@ of an'hsulatinghterisiunder the 
fiuence of a uniform radial magnetic field. It is assumed that the magnetic Reynolds 
number and Hall parameters are small : a d  the induced mrtgnetio field prodwedby the 
motion of the electrically conducting fluid is negligible. It is aka assumed tbt there is no 
separation of -charges and the surfwe of-.the body is not charged so that the el&& field 
3 = 0. The axial pressure gradient is p~escribed and the. cylinders are rotated at speeds 
which are insufEcient~ to generate Taylqr v o r e s .  The tangential velocity profile generated 
in a viscous fluid by the rotating cyhdersin the absence sf vortices becomes a function ' of the axiaI coordimte when an axial vclooity is supirimposed, whether or not itis fully 
developed3. However t h e  existence of a fully developed axial velooity profile at entry to 
the rotating section has been conhmed'by experiments8. In a sdiciently long annulus, the 
tangential profile subsequently approaches the fully developed state when it bewmes 
indepandent of axial position8. . ~ 

F O R M U L A T I O N  O F  T H E - P R O B L E & f  A N D  F U N D A M E N T A L  
E Q U A T I O N 8  

Consider the steady flow of an incompressible electricaLly conduct'i v i w m  fluid " 'between two concentrio rotating non-conducting cylinders of radii a apd b (b  > a) under 
A 

the influence of radial magnetic field B, = - , where B,. ia the magnetic induction in 
). 

rdirection, A is a constant and r is the radial distance from the a& of the cylinder. Such 
a &Id can be produced by passing a steady current paralIeI to the axis of the c o a d  cylin- 
&m as shown in Fig. 7.10-1 of reference 4 where the cylinders terminate at perfect electro- 
dw whhh are connected through a load4. Another method to obtain an approximstion 

, to the desired field is by the use of a permeable core within the and a permeable . . 
207 



cylinder shell outside the annulus. The flux lines would close though these @rmeabIe 
paths at  long distances from the region of interest. The source of th flux could be discs of - 
permanently magnetized material between the permeable paths and the annulus channels. 
Assume that the two cylinders, which are sufficiently long, rotate in the same direction 
with angular velocities w, and o2 respectively. Following Rosso+, it is assumed that 
the induced magnetic field is small and hence it can be neglected. 

The Navier-Stokes equations in cylindrical coordinates for steady laminar viscous 
axisymmetric fully developed incompressible conducting fluid flow with radial magnetic 
field in the absence of body forces and induced magnetic field are 33 : 

where ,2dt are tangential and axialvelocity components respeotively, p and p are density 
and static pressure respectively, v is kinematic viscosity and a is electrical conductivity. 

1 A 
From equation (4), B, is proportional io - and since a t  r = a, B, = - , it follows4 

r' a 
A 

that B, = - . Introduce dimensionless variables as follows : 
r 

wh8re Bo is the charaoteristic magnetic induction, 8, is the Hartmann number, p is 
$5 the visoosity, Re is Reynolds number and -= is the axial pressure gradient which is, 
a x  

supposed to be prescribed. 
* 

The equations (1) - (3) can be expressed in non-dimensional form as : 
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The boundary oon&tk&~ &@ : 
J 

i i e ( R , O ) = = B  
r i 

" (4 ; , z )  = 1  
\i 

w a '  
P e ( A - , B )  = -"- = N  . (6)  ; @e ( .d , GQ ) = riel 

(8) 

~ 2 b  

ii, (1) = o ; &(A) = O  (9) 
S O L U T I O N  O F  T H E  P R O B L E M  

For a fully developed steady viscous flow with aSal pressure gradient through an in6- 
nitely long concentrio rotating cylinders, the:Navier-Stokes equations admit a steady 
solution of the form's8 : , - 

, r; = o , 4 = V(R) , ii, = w(R), 3 = constant %z 

where V and W are functions of R only. Heme the solution of equhtion (7), for fully deve- 
loped axial flow with boundary conditions given by equation (9), can be expressed as : 

H a  - H a  - 
e t = ~ a  + B R  + c x , ~ a  (10) 

8 = 
a, ( P-" - 1 )  

- 2Ra 
( 1 - h  1 

a 
a, = - ( cr = constant ) 

- 4 - & 2  - 
4. > 

The mean axial velocity cowponent ( & ),, is &en by : t 

1 
2  , - - 

(k)" = --IT J Rs,dR 
A 

- - 2  A 
( I  - h  2 t 4 )  

1 - h 2  [ 2 + &  

B 2 -  Ha 
( 1 - h  "1 2 - 8 ,  ) +  ( I - - -  > : ) ]  (11) 

Ror the fully developed tangential velocity profile, b, the equation (6) reduces to : 
a2iig1 1 ace, JO, 

- + ~ - B - j i i - = O  (12) 



The boundary conditions given by equation (8) are redwed to : 
- 

Ql ( A )  = N ;  ah ( 1 )  = 1 (13) - 
.. The -solution of equation (12) with boundary couditiaars given, by squation (13) can 

be written as : 

Qel = C RB + D R-B . (14) 

where 

Using the difference prsedure of Sparrow & Ling, assume that Qe = - 60,. 
where 5e2 matches Gel at  5 = 0,  and decays to zero when i -+ a. Substituting for 
Q from above in equation (6) and replackg the fully developed axial velocity-Lr by 
its mean value ( Tig I),, we get : 

ace2 a2iie2 , a2Ge; -f- --- 1 &e2 t e a  
Re ( G ) m  - - - - 

a; a 9  T 8R2 R oR P2 (15) 

which is subject to the boundary conditions : 

ze, CB, 0) = Gel@) 
Z e  ( 1  = Q 
;ii,, (A,  Z) = 0 " (0) 1 (16) 

%, ( R , a )  = O (d) 

The solution of equation (16) with the boundary conditions given by equation - - -  
(16 b, c, d )  can be expressed as5.: 

b .  

- C)o 

R ) =  A, [ G B ( ~ , R ) ]  exp [-$ -8% z 
I n=l  I - 117) . - 

where 

Gg ( k ,  R) -- Jj3 (1cn R) Yg (Fm) - Jg (km) Y p  @n R) 
L2 p L = Re ( )  ; 8, = '(k,. + , 

\ 

Jg and. Yg are j3th order Bessel functions of the first and second kinds respectively 
and A,  is constant. The characteristic equatioll for the determination of the separation 
constant, k ,  is expressd as : 

JB ( k )  Yg (A-k) - J p  ( A  k) q 3  ( k )  = 0 (18) 

where En is the nth positive root of the above equation. The &&cient A ,  is determined 
in such a manner that the remaining boundary condition (16a) is satisfied. From equations 
(14) and (17), using the boundary condition (16a) and the orthogonal properties of Bessel ? 
functions, A,  can be expressed asl0 : /' 
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1 

Eqoatin) (19) can be integrated nnmerieally. krom equations (14) and (I?), the 
tangential ve~ocfty ae, can be expressed as : . . 

00 L . - - ORP + DR-8 - 2 A. [ #P (k.R) ] exp (T - 8%); 
a = l  

(20) 

D I S C U S S I O N  O F  R E S U L T S  

L 
Ror small Reynolds number or for small L, ( -- 8. ) i -t - k, i , and for 

L 
large Reynolds number or for large A, (- - X,) Z -t - kn2 z/L kn increaees with 2 
Hartmann number Ha. Therefore for small Reynolds number, the fully developecf 

tangential velocity is achieved in a smaller 
axial length, but it  requires greater axial 
bngth for large Reynolds number, The axid 
distance in which the tangential velocity be- 
comes fully developed decreases as Hartmann 
number increases, The fully developed tan- 
gential velocity 48, and the fully developed 
axial velocity 2, are given in Pig. 1; The fully 

wnn ) u r ~ b ~ t P R t  ML~) 
W ~ W  -QO developed tangential velacity Gol i n c r e w  as 

N increases, but it  decreases as Hartmann 
number H, increases. Sinlilarly it is evident ""* from equation (10) and Fig. 1 that the axial 
velocity increases as Reynolds number or 
axial pressure gradient increases, but decres- 

o ses as Hartmann number H,, increases, In 
0.4 a7 Q* the absence of the magnetic field all the 

L 
R equations tend to classical hydrodynamic 

Fig. I-Velocity distributions* equations. 

C O N C L U S I O N S  

The effect of the imposition of the applied magnetic field is to decrea~e the velocity 
field. In the presence of magnetic field, the tangential velocity becomes fully developed 
at a smaller axial distance than in the absence of the magnetic field. 
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