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Abstract. The paper extends the procedures of single and two-level continuous 
sampling plans for Markov-dependent processes under a non-replacement 
assumption. The average outgoing quality (AOQ) of these plans have been 
obtained under this assumption. It  has been shown that, when the serial correla- 
tion coefficient of the Markov chain is positive, it is improper to use Dodge- 
type plans as the actual average outgoing quality limit (AOQL) in the plans for 
Markov-dependence exceeds the desired one under Dodge-type plans. 

Nomenclature 

x,, = 0 if the nth unit produced is non-defective. 

= 1 if the nth unit produced is defective, n 2 0. 

Dl - 0 if the i th  unit produced is non-defective after the implementation of a 
plan. 

= 1 otherwise, i >, 0. 

Sj = number of uninspected defective units passed in cycle j (cycle is the 
period where fractional sampling begins to the time it reverts to 
screening). 

Uj = number of units undergoing screening from the end of cycle ( j-  1) until 
the beginning of the success run of length r of non-defective units. 

V = number of units passed under fractional sampling (whether inspected or 
not) in cycle j. 

N j  -- number of defective units undergoing screening from the end of cycle 
( j -  1) until the beginning of the success run of length r of non-defective 
units. 
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W j  - number of inspected defective units passed in cycle j. 

A(j)  = serial number of the last unit in cycle j. 

p!$' = k-step transition probabilities of the Markov-chain {X,, n 2 0) 

(see Fellerll p. 432). 

(1-a)= [ I  - (a - p)] (== h say) is the serial correlation coefficient of the 
Markov-chain. 

p - u/(u+p)  is the long run proportion of defective units such that max 
(0, 1 - 8-l) c p < min {b-I, 1). 

A = p$k , ' ,B=  1-A 

1. Introduction 

Continuous sampling plans find their applications in ammunition loading and compo- 
nent manufacture in the services of military. The plans are used when the production 
is continuous and the formation of inspection lots for lot-by-lot inspection may not be . 
feasible as in conveyorised line production. Dodge', first devised a sampling inspection 
plan for continuoi~s production, called continuous sampling plan-I (CSP-I). The 
procedure of CSP-1 is as follows : At the start inspect 100 per cent of the units 
(screening) consecutively until r units in succession are found to be non-defective. 
When such a run of length r of non-defective units is observed, discontinue screening 
and inspect only a fraction Ilk of the units. If a defective unit is found revert 
immediately to screening. 

Lieberman & Solomon2 presented the theory of multi-level sampling plans 
(MLP), which is an extension of Dodge's work in single-level continuous sampling. 
The objectives of MLP were to permit a rapid reduction in inspection when 
quality was superior and to require screening only when the quality submitted was 
quite poor. The procedure of MLP is the same as CSP-1, except for the rule of action 
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under fractional sampling which is as follows : When r inspected units under the 
(i-1)th level of sampling (0th level is screening) is defcct-free, switch over to ith 
level of sampling ( i  = 1, 2, ..., m) if a defective unit is found within r inspected units 
under i'vevel of sampling, revert to (i- 1)'h level (i 5 1, 2, ..., m) of sampling. 
At level m, if r sampled units are defect-free, continue sampling at level m. The levels 
from two to six seem to be of practical interest. 

All the continuous sampling plans assume that, a defective unit found during 
inspection are replaced by non-defective units. In certain conveyorized production 
line, such as explosives, it may not be possible to replace a defective unit by a non- 
defective unit. but it may be possible to remove it. Banzhaf & Brugger3 and 
Brugger4 discussed the application of continuous sampling plans (MIL-STD-1235 
(ORD)) in U.S. military under a non-replacement assumption. Endres5 discussed the 
computation of Unrestricted Average Outgoing Quality Limit (UAOQL) when 
defective unit is removed but not replaced. Abrahama gave a graphical method of 
parameter selection for three continuous sampling plans under a non-replacement 
assumption. 

In almost all the continuous sampling plans, it is assumed that the production 
precess is under statistical control (i.e., the probability of a defective unit does not 
change and the performance of a unit is not affected by any other unit). However, 
this assumption is not valid in practice. For example, when we are concerned with 
ordered observations, some kind of dependence is anticipated. Usually, the succes- 
sive units in the production process tend to depend on each other. Here, we may 
recall the practical example of a scheme discussed by Broadbent7 for Markov- 
dependent production process. He described a production process where a mould is 
continuously producing glass bottles in an automatic scheme from a single mould. 
He reported that, defective and non-defective bottles occur in runs and sdggests 
therefore a Markov model. 

Under the assumption that, the production process is not under statistical control, 
Liebermans, first presented an analysis of CSP-1. Under this assumption, the worst 
possible behaviour of the process would be to produce all non-defective units during 
screening and all defective units under fractional sampling. It is unrealistic that, 
an automated mass production would follow such a scheme. Dodgeg and Sackrowitzlo 
have contended that, this assun~ption is too unrestrictive and unrealistic. 

Therefore, a mathematical model that compromises the statistical control 
situation and the total-lack of-control situation is to be sought. One such model that 
is mathematically feasible and includes the statistical control situation is the two- 
state time-homogeneous Markov-chain model. 

The purpose of this paper is to extend CSP-1 and MLP with only two levels 
(MLP-2) to Markov-dependent production processes under a non-replacement 
assumption, using systematic sampling procedure (i.e., inspecting every kth unit 
under fractional sampling). The implementation of these plans, technically assume 
that the serial correlation coeficient of the Markov-chain is known. The AOQL of 



these plans have been compared for different values of the serial correlation coeffi- 
cient. We have demonstrated how the information obtained through the ser~al 
correlation coefficient of the Markov-chain is useful to a quality assurance practitioner 
to decide about the choice of a plan. 

2. Assumptions 

(i) We assume that {X,, n > 0) follows a 0 - 1 valued Markov-chain with transi- 
tion probability matrix 

and initial distribution 

(ii) We assume that PO = 1 (i.e., the zeroth unit is always defective) because 
screening is going to follow a defective unit in and cycle. 

(iii) It is assumed that the zeroth unit is not counted in the AOQ. 

Average Outgoing Quality and Average Outgoing Quality Limit 

For any given plan (under a replacement assumption) it follows that the total 
number of uninspected defectives in m cycles, Sl + S2 -t ... + Sm = Dl + D2 + .-. 
+ DA(~,. From the properties of the Markov-chain (X,, n >, 0) togethe1 with n, = 1, 
for j > 1 each of the sequences of random variables isj, j 2 11, {U,, j > 11, 
{Nj, j > 11) and {Wj, j > 1) is an independent and identically distributed (i. i. d.) 
sequence. Thus following Liebermans the AOQ a plan (under a non-replacement 
assumption) is given by 

It must be noted that the distribution of S,, Vl and Wl would be different for different 
plans. However E (U,+r) and E ( N , )  are common to all the plans. 

To derive E (Ul + r), we recall the definition of a failure sequence : a sequence is 
called a failure sequence if it contains r or less units and terminates with a defective 
unit. Noting that we are working no = 1 we define PI as the probability of not 
finding r non-defective units before the first defective unit is found and h as the 
average number of units in a failure sequence. We find that, 

where 
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It is easy to note that the probability of the number of failure sequences observed 

before getting a success sequence to be Pi Q, where Q1 = 1 -PI and J > 0. Thus 

E (U, + r)  = h P1 Q;l+ r (6) 

Substituting Eqns. (4) and ( 5 )  in Eqn. (6), we get finally after reparametrization 

E (U, + r )  = (1-G)/pG8 (7) 

When systematic sampling procedure is used, we have P [Vl = sk] = Arl B, s ) 1 
so that 

E (V,) = k/p [l- (1 - 8)k] (8) 

k-I 
and S1 =V, Z Ti, where Ti is the number of uninspected defective units in the ith 

i ' 1 

batch of k units in the first cycle. By Markov property X's are i. i. d. Hence by 
k-1 

Wald's equation E (S,) = k-I E (V,) E (TI) and E (TI) = I; so that 
h-I 

E (S1) = (k8 - [l - (1 - 6)k]) /6  [I - (1 - (9) 

It can be seen easily that 

and 
E (Wl) - I (11) , 

Substituting Eqns. (7)-(11) in Eqn. (3), we obtain the AOQ expression for CSP-I 
under a non-replacement assumption as 

AOQ pG (k8 - H)/[Hq + G (k8 --HI]. (12) 

TO obtain the AOQ expression for MLP-2 for Markov-dependent production 
Processes, it is enough if we compute E (V,), E (S,) and E (W,). The expressions 
E(U1 + r), E ( N , )  remain the same as in Eqns. (7) and (10). Recalling the 
procedure of MLP-2, we now have the probability of possible cycles and the average 
number of units passed under fractional sampling as follows : 

Probability of possible cycles Average number of units passed 
under fractional sampling 

A T  (DAT-l)t-1 C [ ( v  + rk) t + k] 
t-1 

A? (DAr-l)t-1 DA"2 B,  t 2 1 and A' (DAP-i)t-i D A ~ - 2  B 
t-1 i-l 

i = 2, 3, ..., r [ (v  + rk) t + ik] 
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where v = 1c2/E is the average number of units passed from the end of first level of 
fractional sampling until a defective unit is found under the second level of fractional 
sampling. Now, 

r W 

E (Vi) = C A'-' Bik + I: A' (DAr-I)'-' C [(Y + rk) t f k] 
1-1 '=I 

w r + C C (DAr-')'-I DAi-2 B [ (v  + rk) t + ik] 
I-1 i -2 

= (k[1 -Ar + BAr-' (AC- BD)] E + A' Bk2)/EB (I - DAr-') ( 1  3) 

r 00 

E (S,) = B [Ai-l B] i RA, + C A' [DAr-']'-l C 
1-1 t-1 

E (W,) = [I - J Ar (2- J)]/(l - J), where J = DAr-I (1 5 )  

Substituting Eqns. (7), (10). (I3), (14) and (15) in Eqn. (3), we obtain the AOQ for 
MLP-2 under a non-replacement assumption as 

AOQ = 
BEpG8 {A, ( 1 - JB2)+ A' [A3+ A2 (J+C)-A1(1+ JB)]) 

([q-G (1 -pa)] (1 -J) BE+pG 8R) (16) 

where 

R = (RE [I- Ar+BAr-' (AC-- BD)] + A' K2 B-BE [I - J + (2- J )  A']) 

When the serial correlation coefficient is known, it is possible to obtain a relation- 
ship between r, k and AOQL ( p ~ )  in CSP-1 for Markov-dependent production 
processes (like the one given by Dodge'). 

- - - 
The relationship between r, k and p~ in CSP-1 for Markov-dependent production 

process under a non-replacement assumption is obtained as pL = p { 1 + H (1 - p) 
G-11-1 )-I, where p is the solution of the equation 

In MLP-2 for Markov-dependent production process, such relationship between 
r, k and AOQL cannot be obtained by analytical methods. Therefore, we use the 
computer to obtain the AOQL values. For fixed r, k and known 6 we calculate the 
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AOQ values for p = 0.001250, 0.00250, . .. etc., bearing the mind that max (1 - 6-', 0) 
< p < min { P I ,  I j. The computer programme reports only that value of the AOQ 
for which the next calculated value is smaller. This is justified because the AOQ 
function in Eqn. ( 1  6) is continuous and concave. In computing the AOQL values we 
have used an iterative procedure. After getting extensive tables giving approximate 
AOQL values for the triplet (r ,  k, 3) we collect certain AOQL values which are 
commonly used. 

3. Discussion 

We first of all observe from the Table 1 that, when the production process is not 
under statistical control, the actual AOQL obtained under the plan following Markov- 
dependence with serial correlation coefficient positive, always exceeds the AOQL that 
is desired under statistical control situation. However, when the serial correlation 
coefficient is negative the desired AOQL is always guaranted by the plans that are 
under statistical control. We also note from the Table 1 that, MLP-P-2 always 
carry higher AOQL values as compared to CSP-I. However, when p remains 
constant, the limiting value of AOQ as 8 + 0 is zero in CSP-1 and MLP-2 plans. 
Similarly the limiting value of AOQ as 6 4 2 is zero in both the plans. Therefore, 
we find that CSP-1 gives more protection in terms of AOQL than MLP-2. 

Table 1. Compar~son of AOQL values In percentage for k = 7 and r = 43 

Plans A 0.91 0.74 0.46 0.31 0.09 0.05 0.00 -0.91 -0.82 I 
CSP-I 2.64 265  2.49 2.37 2.17 2.13 2.09 0.89 0.0248 

Thus when the serial correlation coefiicient is positive, the desired AOQL cannot 
be attained when Dodge-type plans are used. At the same time, when the serial 
correlation coefficient is negative, the Dodge-type plans can still be used as the AOQL 
under Dodge-type plans always guarantee the decided AOQL (because p cannot exceed 
min {P1, 1)). The AOQ expressions for CSP-1 and MLP-2 for Markov-dependent 
process under replacement assumption has been obtained in Rajarshi & 
Sampath Kumarl?. 

4. Conclusion 

When the successive units in a continuous production process is neither under a state 
of statistical control nor follow a scheme of total-lack of-statistical control, the two- 
state time-homogeneous Markov-chain model that compromises both the situations 
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seem to be quite appropriate. It is concluded that, when the serial correlation 
coefficient of the Markov-chain is positive, CSP-1 and MLP-2 plans which assume 
statistical control should not be used because the actual AOQL given by Markov- 
dependent process always exceeds the desired AOQL. Under Markov-dependence, 
CPS-1 may be preferred to MLP-2 as the former gives more protection in terms of 
AOQL than the latter. 

Finally, it is recommended that the quality assurance practitioner should carry 
out a test for independence (see Lehmannls p. 155) and decided ultimately to choose 
a plan. 
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