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Cylindrical Shock in a Self-Gravitating Gas
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Abstract. The propagation of diverging cylindrical shock in a seif-gravitating
gas having an initial density distribution pq = Br~%, where B and w are constants,
has been studied for the two cases : (i) when the shock is strong and (ii) when
it is weak. Analytical relations for shock velocity and shock strength have
been obtained. It is shown that for strong shock, the shock velocity must
decrease continuously with shock propagation; for weak shock, it initially
decreases and attains a minimum value for certain propagation distance "Upmin
and beyond this distance starts increasing.

Finaily, the expressions for the pressure, the density and the particle velocity
immediately behind the shock have been obtained for both the cases.

1. Introduction

The non-linearity of shock phenomenon is retained upto several ‘hundred meters
and the similarity method is inadequate in a region where Mach number M is taken
as

M=1+4e¢, ‘ (n

where e is a parameter which is negligible in comparison to anity. Recently, .
Chisnell-Chester-Whitham! -3 method has been used to investigate the propagation
of weak shocks®.

In the present paper CCW method is applied to study the propagation of
diverging cylindrical shock in a self-gravitating gas having an initial density distri-
bution p, = fr-*, simultaneously for the two cases : (i) when the shock is strong and
(if) when it is weak. Analytical relations for shock velocity and shock strength have
been obtained. The expressions for the pressure, the density and the particle velocity
immediately behind the shock have also been derived.

The results accomplished, have been compared through Figures and Tables.
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2. Basic Equations, Boundary Conditions and Analytical Expressions for Shock
Velocity

The equations governing the cylindrically symmetrical flow of the gas under
the influence of its own gravitation are
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where m(r, 1), u(r, t),p(r,t) and P (r, t) denote respectively the mass inside a
cylinder of radius r and unit length, the velocity, the pressure and the density ata
distance r at time fand a® = yp/P.

Let p, and P, denote the undisturbed values of pressure and density in front of
the shock wave, and u;, p; and P, be the values of the respective quantities at any
point immediately, after the passage of the shock, then the well known Rankine-
Hugoniot conditions permit us to express u;, p, and P; in terms of the undisturbed
values of these quantities by means of the following equations:
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where U is the shock velocity and q, is sound velocity in undisturbed medium.
Case 1. For strong shock, U > a,, then boundary conditions (3) reduce to

2 1 U
D = —7% U2’ py = EK + ) and u U = (:/—-F'g_lj_ (4)
Case 2. For weak shock, using relation (1) boundary conditions (3) become
YPo (x+1 } '
= 4
=G+ { v T

P1=P{l+(yil)} | ®)
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For diverging shock the characteristic form of system of equations (1)-that is,
the form in which equation contains derivatives in only one direction in (r, 7) plane, is

(Pa*u)  dr Pa Gm _dr _
dp+padet P S+ S =0 (6)

The final step is to substitute the shock conditions (4) or (5) into this relation. A
first order differential equation in U? or e (r) is obtained which determines the
shock. For strong shock substituting (4) into Eqn. (6), we get

du? - A BGm
Ly (. 7
dr r v rz o @

where
A=4[R2+ VG =D} 2/ = D + vEG—DI T
B=[x+ 1 vE G =Dk — D2 +vEE = D} 2y — 1)

+V2y/(y — D}
On integration Eqn. (7) yields,

U2 = r-4{K — BG {m r4-2 dr}, \ . o ®)
where K is a constant of integration. ’

Now, assuming the initial density distribution law as P, = fr—v,
the mass inside a cylinder of radius r and unit length, is written as

27z B
2 —w

m = r?-—w ’ ‘ (9) \

Substituting the value of m in Eqn. (8) and integrating, we get
U = r4{K — Criti—» : : (10)

27p GB

where C = C-WAdTT—w

The condition of hydrostatic equilibrium prevailing in front of shock is written as,

1 dp, _ Gm

P, dr re

(1

Now for weak shock, using conditions (5) and substituting into (6) and remember-
ing (11) also, we get

det i (e 4 oy LAP

. =0, (12)
. Do ay r ! :
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which immediately integrates to
« = K p;tt a7 - (13)
where K, is a constant of integration. -
From Eqn. (11), the pressure p, and sound velocity a, can be written as

_ v21rﬁ2'G vl
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where
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l

27 B*G/(2w — bl) 2 -—iw)

K, = VZBGT @w - D@ —w

Positivity and finiteness of the equilibrium picssure as defined by the above equation,
requires that constant w should obey the inequality, '

t<w<2 » (15)
Substituting the values from Eqn, (13) in Eqn. (12), we get

Sw-1)

e=K,r where K, = Ky K,V K 7*

This value of e together with Eqn. (5) gives for weak shock

1l —w 3
— (| :
U=Kyr 2 4+ KKri0™ (16)

Now the expressions for shock strength can be easily written as

UV_ Gw—1N2—w (= Atw— k :
(00) o 2nyBG Kr vc an
and :

U i—-(w—l)

=14 K, r
4 B

respectively for strong and weak shock. & R

The pressure, the density and the particle velocity immediately behiﬁ;ﬁ the sHock
for the two cases are given as, D
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—-w—4 .

p = EITE—Crem,

== —————-’ : } Brv, _ (19)

__.2_ _ ~A[2 A-wHll e
u=(v+lf5r -{K—Cr }
and
4 Iw+ 1
p-—Kzr—‘:wﬂ_}_ ; _}/_ ]K‘.:Kdr 4 7
4 w—35

P =Brv- T—?—@Tw K,r 4 : (20)

3. Discussions

The Eqn. (10) for shock velocity representing the propagation of strong di-
verging cylindrical shock through self-gravitating gas indicates that as the shock
advances, the shock velocity must decrease. General consequences of Eqn. (17) are
that (i) the shock will be relatively strengthened or weakened as w is greater or less
than I -+ A, and (i) the case w = 1| + A corresponds to the shock moving with cen-
stant strength, i. ¢, to a shock whose radius increases uniformly for all times. Any
such case is, however, astrophysically important because of the fact that the radial
velocity observations of most novae in the course of their outbursts indicate veloci-
ties of expansion which-different as they may be from star to star remains more or
less constant within periods of the order of several days. An increase in w from
1/2to 1 4 A reduces the shock: velocity whereas for further mcreasc in w from
1 + A to 2, the shock velocity increases (Ref. Table I).

Variation of shock velocity and shock strength wn,h propagatlon distance for

w=1.03, 1.18, 1.2 and 1.95 have been shown in Fig = 20 atr=1.0.

e = 40 :
Strengthening for w = 1.05 and 118 and weakening-.“fQ; wi= 1.2 and 1.95 is
evident. T

Equation (16) contains two terms involving the propagation distance r one with
positive power and other with negative power of r for all values of w lying in the
range 3 < w < 2except w = 1. Whereas for low values of r the one with negative
power happens to be dominant term, for large values of r, it is the other term
which primarily determines the shock velocity. Consequently, the shock velocity

™
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Figure 1. Variation of shock strength (—) and shock velocity (...) with
distance for strong shocks.

Table 2. Variation of 'y

and shock velocity with w

min
w K, r : U/K, Ulag
Umin
0.75 1.0542412 4.3341105 2.0019869 1.6666666
1.05 0.1874735 6.5388 x 108 1.0033702 1.6666663
1.15 0.1054241 18699.664 0.7970053 1.6666666
1.18 0.0887033 7819.7954 0.7438055 1.6666666
1.6 0.0079056 369.79855 0.2827868 1.6666666
1.8 0.0025 266.66666 0.1784272 1.6666666
1.95 228.4151 0.1263148 1.6666666

0.0010542

initially decreases asthe shock progresses and attains a minimum value for a certain
propagation distance r,

ry = [
min

given by
D

mi

o LG




Table 3. Variation of shock velocity and shock strength with distance for weak shocks

W = 1.05 W = 1.18 W=1.38
r U/K, Ulay r U/K, Ulag r UIK, Ulag
10 1.1484415 1.216491 2 1.0369272 1.1036743 50 0.2352688 1.1250
50 1.1239254 1.2394007 10 0.9338735 1.1489154 75 0.2111587 1.1875
100 1.1140636 1.2499999 25 0.8854703 1.1830106 100 0.1981116 1.2500
1000 1.084302 1.2886954 100 0.8258667 1.2499998 200 0.1801686 1.5000
10000 1.0591415 1.3333802 500 0.7768589 1.3590939 250 0.178516 - - 1.6250
500000000 1.003404 1.6555797 1000 0.7624244 1.4197007 265 0.1784281 1.6625
750000000 1.003379 1.6724054 7500 0.7438164 1.6604326 275 0.1784475 1.6875
1000000000 1.0034552 1.6846047 10000 0.7440828 1.7045953 300 0.1787267 1.7500
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Figure 2. Variation of shock strength (—) and shock velocity (...) with

distance for weak shocks.

which depends on initial strength of the shock. Beyond this distance shock velocity
starts increasing. Similar variations in shock velocity for spherical shock through

self-gravitating gas has been reported by Kumar and Saxena®. Taking ag = 1.25
0

at r =100, r, together with minimum value of the shock velocity for different
Um

in
values of w are given in Table 2, An increase in w reduces the shock velocity (Ref.
Table 3). Fig. 2 shows the variation of shock velocity with propagation distance for
w = 0,75, 1.15, 1.6 and 1.95. Case w = 0.75 weakens the shock whereas for the
other values the shock is strengthened.
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