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Heat Transfer for Elastico-Viscous Flow Between Two Rotating
Porous Discs
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Abstract. The problem of temperature distribution -and heat transfer for
elastico-viscous fluid flow between two rotating porous discs is. studied. The
equations of motion and energy are solved by a regular Perturbation method for
small Reynolds number. The effects of the elasticity of the fluid, suction/injection
parameter, rotation parameter, Prandtl number and Eckert number on Nusselt
numbers at the two discs have been discussed numerically and compared with
Newtonian fluid case. )

1.. Introduction

Flow problems through porous parallel discs with uniform suction or injection
velocities, have been examined by various authors. Recently, Wang! studied sym-
metric viscous flow between two rotating porous discs at moderate rotation. Sharma
& Verma? investigated the elastico-viscous fluid flow between two rotating porous
discs.

However, little efforts have so far been made in determining the effect of injec-
tion/suction at the boundaries on the temperature distribution and heat transfer
through pipes, channels or parallel discs, more especially, when the fluid considered
is of non-Newtonian character. Inman® has determined the effect of the variation of
cross-flow velocity on the temperature distribution and heat transfer for flow in an
annulus with porous walls under the assumption that the fluid injection rate at one
wall is equal to the fliud withdrawn rate is at the other wall. Verma & Bansal* have
studied the effect of suction on the temperature distribution and heat transfer in a
plane Couette flow and laminar flow in a circular pipe, while the unsteady temperature
distribution for laminar flow in a porous straight channel, has been studied by Gaur®.
Chaudhary & Gaur® have discussed the heat transfer for laminar flow through
parallel porous discs. ‘
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In this paper our aim is to investigate the problem of temperatu e distribution
and heat transfer for elastico-viscous liquid flow between two rotating porous discs.
The elastico-viscous liquid Walters” model B' has been used in the present analysis
and the velocity profiles as obtained by Sharma & Verma have been used.

The present investigation can be made use of in porous bearings and self-
impregnated bearings used in defence equipments. The practical application that

can be envisaged for this problem is in the design of thrust bearings, radial diffusers
ete. '

~ 2. Formulation of the Problem

Consider two coaxial porous discs situated at Z = == L and rotating with the same
angular velocity © (Fig. 1). Fluid is withdrawn from both discs with velocity W (W is
negative in the case of injection). Assuming that, the gap with 2 L is small compared
to the diameter of the discs, so that the end effects are neglected. The flow field is
symmetric about Z = 0 plane and the Z-axis.
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Figure 1. Physical model.
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The axisymmetric form of the energy equation for an incompressible elastico-
viscous fluid in cylindrical polar co-ordinates (r, g, z) is
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where P is the density, Cp the specific heat at constant prci;suie, T the temperature,

k represents coefficient of thermal conductivity assumed to be constant, (¥, v, w,) are

the velocity components in the r,g and z directions respectively and Mo'the limiting
viscosity at small rates of shear is given by

: ov oy aw v v ow v dvou u fov\2
i - e ()

.

n.,=ZJ°N(~r)d-: | o)
and
k.,=:f° * N() d= 3)

N (<) being the relaxation spectrum as introduced by walterss. This idealized model

is a valid approximation of a Walters liquid B’ taking very short memory into account
so that involving

;}QT" N(z)dr nis : (4)

have been neglected.
The boundary conditions are

Z=—"L:T=T1
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and , : IR
Z=+L:T=T, ’ ©)

where T, and T, are some constant temperatures.

3. Solution of the Problem - : -

Using the velocity components u, v, w in the following form
u=rf () WL a0 :
v=1rg() W/L

, ©
w=—2f)W :

|-
b
!

J

“and non-dimensional temperature

T-T,

b= T2 _T]_

T, > T) | | | o
in Eqn. (1), we obtain

%9 1o o9 . R RS
a?Jrzéz‘*a:sﬁPR,(zf‘a%”fia‘a)

+ PE{I2f" 4 B (g2 + 1)} + A PREQAF f" |
—2fFBQff =4 f 2 )} =0

vt

®

where ;
E n=¢z/L, E=rlL;
PWL

R = N (Reynolds’ number),
0 ; *

P = 1, Cp/k (Prandtl number),
E = W?/Cp (T, — T,) (Eckert number),
A = ko/p L?® (Elastico-viscous parameter),
and the corresponding boundary conditions are reduced to
n=-—1,6=0.
Ut ©)
"= + la 0= 1. ’ ’
Following Verma & Bansal,* we seek the solution of (8) in the following form
§=F@)+EG) + & H(r) | (10)
Where F(M), G (1) and H (v) are unknown functions to be determined.
Substituting (10) in (8) and equating coefficients of like powers of &, we have
. F"+4 H +2 PRfF'+12 PEf"* 24 A PRE(f f" — f7) =0, (11)
G +PRQ2fG — f'G) =0, (12)
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and
"+ 2 PR(fH — f’H) + PE(g" +f”2) +2 A PRE(f" fr
o + /g8 —2f f"?) =0. : (13)
The boundary conditions are ' : B .
F(—1)= 0=G(=1) = H(—1), } (14
F(l) = Land G(1) =0 = H(]).
We assume that the suction/injection parameter R is small.
Then all the physical quantities can be expanded in terms of the small parameter R

X () = X, - RX, -+ RXs + ... S (15)

Where X stands for any f, g, F, G and H.

After substituting (15) in Eqns. (11) to (13) and equating coeﬂic1ents of llke powers
of R, we obtain the following set of equatlons

Fy +4 Hy + 12 PEfp =0, S (16)

Gy =0, ' | ' . an
Hy + PE(g¢ + f§£)=0, o (18)

Fy+ 48, + 2Pf Fy + 2 PEfifi+24 A PE(fufi f5
—sgy=0 a9
G+ PR %G — fiG) =0 (20)
Hy + 2 P(foHy — f4§ Hy) + 2 PE(g; gi + '.xfi)
FINPESSifo + fogh g8 — 2 fof88) =0, Q)
Fi - 4H, +2P(f, Ff + Fif{) + 12 PE(F242Ff4 f3)
FUNPEGLFSLi+ LS5 £5+ o fif1= 389 =0, @)
G +P(2f Gi+2caﬁ—fz;cl——Gof:)=q, @
Hy +2P(fi B + Hs f — [y Hy — H,f}) + PE (g¢
28 g S +2158) +2APECS a"f1+fpfs'fi'
F AL+ fogsgh + fagh g1+f1go g5 — 47 f5f1

—2fif)=0, ; (24)
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The corresponding boundary conditions are reduced to :
Fo(=1)=0=Go(—1) =H, (—1),
F(- 1)=0=Gl(k—’— 1) =8 (=1),
FB(~1)=0=G(—1)=H (—1),

Fo () = 1, G, m - 0 = Hy,(1),

EM<=0=60=80 | 29)
F (1) =0=0G,() = H, m.
From (16) to (24) with (25), the solutions of Fy, Fi, Go, Gy G, H, and H, are
Fy= (— 8¢+ 454 — 1501 + 113) PEMO + (0 + 1)/2, (26
= (443710 — 4725¢8 + 2331048 — 598507% — 1930542 1
4 60127) PE/67200 + (261 — 66078 |- 25087¢ |
— 4080yt -+ 417072 — 1964) PE/22400 + (— #5 | @7
+ 10%° — 9n) P/8O + ( — 14107° -+ 8736x0 1+ 1260n% |
— 19912072 + 90534) A PEJ22400, J
Gy = 0= G, =G, | 8
H, = 3(—7,4+1)PE/16 Lo (29)
Hi = (157 — 25205 + 21048 — 1260 + 1287) P*E/8960 + (978

— 168+° + 2347x¢ — 75 ) PE/4480 + (61 — 91t - 3) \ PEJ160.

e (30)
. The expressions of F, and H, are not presented here for the sake of brevity.

Here, Jos J1» for &0 g1 and g, have been taken from reference [2] and are given by
So = (*—3n) /4, e
fi =(- W 4 2005 — 3978 + 1971)/1120 + /\ (187’15 — 36%°
| + 181)/240, | D €
fo = (63011 — 15407° + 1168217 + 1570845 + 22157 + 32887)/5174400
4 B (= o+ 2198 — 3993 + 197)/840 £ A ( — 2107 + 504097 |
— 98285 - 53761° — 378y )/470400 + A2 (45097 — 75645 4 16278
+ 1431)/8400,

@31

| . (33)
g = B B ) R
g = B0 — 61+ 5, ey
and g = B[(— 97 + 84n® — 222¢* — 30367)2 + 3138)/6720

+ A(—29° + 15m* — 13)/10], (36)
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where S . '
B = Q'L/W (Rotation pa;rameter).

The rate of heat transfér in terms of Nusselt number is given by k

o 2LQ* | R
M= g, Tl) ‘ - @7
wheré
0* L [ @rnrg)dr
1,.('.2 ro
so g T

and Ty is the dlstance of a gnven point from the centre of elther disc. Now
calculating g* for, Z = — L and Z:= + L, Nusselt numbers for the lower and the

upper discs can separately be obtamed :
The Nusselt number at the lower dxsc [ (Nu)-l] and at the upper disc
[ (Nw) +1] are ngen by
[(N,,)_l] = —.8.4 PE —1 4 R(—— 5.1048 P2E+01829 PE —-04P

~ 13.5771 \ PE)+ R*(— 2.1387 PAE + 0.5379 P*E
+ 0.0295 PE — 0.6451 §* PE —0.0616 P* + 0.0025 P
000143 A P -+ 4.0875 A P*E 4 00236 A PE
4+ 3.6991 A® PE) + (&2 + £8) [ — 0.75 PE — 0.3429 P:RE
+ R® (= 0.2325 P3 E + 0.0292 P*E + 0.0129 PE
— 0.4857 B2 PE — 0.0862 A P°E + 03513 A PE
| + 1.1057 A2 PE)] | e (38)
and - v
[(Np 4] =84 PE—1 + R(5.1048 P°E — 0.1829 PE — 0.4 P
4 13.5771 A PE) + R® (2.1387 PE — 0.5379 P*E
_ 0.0295 P + 06451 @ PE — 0.06159 P2 -+ 0.0025 P
+0.01143 AP+ 40875 A P°E -+ 0.0236 A PE + 3.66991
X A* PE)+ (& + &) [0.75 PE + 0.3429 P*RE
- R® (0.2325 PSE — 0.0292 P*E — 0.0129 PE + 0.4857 6 PE
© + 0.0862 A P*E— 03513 A PE — 1.1057 A® PE)], (39)

where &, = ry/L.
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4. Numerical Discussion

In this paper the problem of temperature distribution and heat transfer .of steady
laminar flow of an incompressible elastico-vicous liquid between two rotating porous
discs have been studied  The basic. equations have been solved by the Perturba-
tion method in which the suction/injection parameter ‘R’ is taken as the small Pertur-
bation parameter. Also, in the present. analysis two discs rotating with the same
angular velocity in the same sense have been considered.

Figs. 2 & 3 show the variation of Nusselt number i. e. (¥,)-, ' (Nusselt number at
‘the lower disc) and (Ny),, (Nusselt number at the upper disc) against £/£, for Prandtl
number P ( = 5), elastico-viscous parameter A\ (= 0, 0. 5,0. 75), Eckert number £
(= 0.01), rotation paramter 8 (= 0.5) and suction/injection parameter
R ( = — 0.25,0.25). '

Fig. 2 shows the variation of the Nusselt number at the lower disc aganist
E/E,, for the fixed values of P =5, E = 0.01, § = 0.5and §, = 5. It is observed
that (N,)., is negative and it goes on decreasing as we move away from the centre,
for suction/injection.

The variation of the Nusselt number at the upper disc against £/&,, for the same
fixed values of P, E, B and £); has been depicted in Fig. 3. It is observed (N,),, is
positive throughout and it goes on increasing as we move away from the centre in
suction as well as in injection case.
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Figure 2. Variation of Nusselt number at the lower disc against £/Ey for fixed
values of E = 0.01, P= Sand £y = 5, (curve 1, 2, 3——R = —0.25; A = 0.75,
0.5 & 0 and curve 4, 5, 6——R = 0.25, A = 0,75, 0.5 & 0).
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Fig. 3—Variation of the Nusselt nnmber at the upper disc against §/€q for the same
fixed values of E=0.01, P=5 and g =35, (curve 1,2,3———R = — 0.25,
A = 075, 0.5 & 0, curve 4,5,6———R = 0.25; A = 0.75, 0.5 & 0).

The values of the Nusselt number at the lower and upper discs for various values
of P (=5,10), E (= 0.01,0.02), B (= 0.5,1.0), R (= — 0.5, — 0.25, 0.25, 0.5),
A (= 0.0.5,0.75), & = 5.0 and £/€, = 3.0 are presented in Tables 1 & 2. We con-
clude from the tables that the value of the Nusselt number at the lower disc decreases
with the increase of either P, or E, or §; when R (suction parameter) is fixed, but it
increases with the increase of A, when P, R, Eand B are constants. The value of
the Nusselt number at the upper disc increases with the increase of either R (suction
parameter), or P, or E, or B; for both the Newtonian and non-Newtonian fluids.

Table 1. Nusselt number (¥,) of the power and upper disc for £ = 5 and §/£g = 3
in suction case ) '

R P E 8 ! A N 11 (V)
0.25 5 0.01 v 0.5 0 18.5449 —21.7359
0.25 5 . 0.01 Q.5 0.5 18.4816 —21.5992
0,25 3 0.01 0.5 075 18.2902 —=21.3657
0.5 5 0.01 0.5 0. 37.4455 —42.2093
0.5 5 ~0.01 0.5 0.5 37.0226 —41.4931
0.25 i0 0.01 0.5 0 77.2548 —82.0216
0.25 10 0,01 0.5 0.5 77.5287 —82.0213
0.25 5 0.02 0.5 0 38.6853 —41.8763
0.25 5 0.02 0.5 © 058 38.5538 —41.6048
0.25 5 0.01 1.0 0 , 18.8310 -~21.0219
0.25 5 0.01 1,0 0.5 18.7677 —22.3076
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Table 2. Nusselt number (N,,) of the lowar and upper dlSC for Eo = 5and £f§y =
in injection case o i

R P E ‘,ka}*VA,ya'WWL,Ag(MM
-025 5 00L-. 05 ., 0 . . 81958 - 93867
—0.25 5 0.01 0055 TS5 79627 —"9.0804
-0.25 5 001 05 075 76864 - — 8.7631
"—~0.5 -5 0.01 0.5 00167472 —17.5109 -
-05 5 - 0.01 0.5 05 15,9849 . ~16.4554
—025. 10 001 0.5 . 0 338490 - —34.6159
—0.25 10 001 . .05 - 05 " 337779 —34.2761
~0.25 5 002 . 05 S0 16,9870 . ~18.1779
—0.25 5 0.02 0.5 . 051 16 5223 =17.5671
—0.25 5 -0.01 1.0 0 84819 . - 96728
—-0.25 5 0,01 o 10 L0 82489“; . —9.9585"
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