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Abstract. The problem of temperature distribution and heat transfer for 
elastico-viscous fluid flow between two rotating porous discs is studied. The 
equations of motion and energy are solved by a regular Perturbation method for 
small Reynolds number. The effects of the elasticity of the fluid, suction/injection 
parameter, rotation parameter, Prandtl number and Eckert number on Nusselt 
numbers at the two discs have been discussed numerically and compared with 
Newtonian Auld case. 

1.: Introduction 

Flow problems through porous parallel discs with uniform suction or injection 
velocities, have been examined by various authors. Recently, Wangl studied sym- 
metric viscous flow between two rotating porous discs at moderate rotation. Sharma 
& Verma2 investigated the elastico-viscous fluid flow between two rotating porous 

c discs. 

However, little efforts have so far been made in determining the effect of injec- 
tionlsuction at the boundaries on the temperature distribution and heat transfer 
through pipes, channels or parallel discs, more especially, when the fluid considered 
is of non-Newtonian character. Tnman3 has determined the effect of the variation of 
cross-flow velocity on the temperature distribution and heat transfer for flow in an 
annulus with porous walls under the assumption that the fluid injection rate at one 
wall is equal to the fliud withdrawn rate is at the other wall. Verma & Bansa14 have 
studied the effect of suction on the temperature distribution and heat transfer in a 
plane Couette flow and laminar flow in a circular pipe, while the unsteady temperature 
distribution for laminar flow in a porous straight channel, has been studied by Gaur5. 
Chaudhary & Gaur6 have discussed the heat transfer for laminar flow through 
parallel porous discs. 
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In this paper our aim is to investigate the problem of temperature distribution 
and heat transfer for elastico-viscous liquid flow between two rotating porous discs. 
The elastico-viscous liquid Walters7 model B' has been used in the present analysis 
and the velocity profiles as obtained by Sharma & Verma have been used. 

The present investigation can be made use of in porous bearings and self- 
impregnated bearings used in defence equipments. The practical application that 
can be envisaged,for this problem is iri the design of thrust bearings, radial diffusers 
etc. 

2. Formulation of the Problem 
4 

Consider two coaxial porous discs situated at Z = i L and rotating with the same 
angular velocity (Fig. 1). Fluid is withdrawn from both discs with velocity W (W is 
negative in the case of injection). Assuming that, rhc gap with 2 L is small compared 
to the diameter of the discs, so that the end effects are neglected. The flow field is . 
symmetric about Z = 0 plane and the Z-axis. 

Figure 1. Physical model. 

I 

The axisymmetric form of the energy equation for an incompressible elastico- 
viscous fluid in cylindrical polar co-ordinates (r, e, z) is 
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where P is the density, Cp the specific heat at constant pressure, T the temperature, 
k represents coefficient of thermal conductivity assumed to be constant, (u, v, w,)  arc 
the velocity components in the r,B and z directions respectively and q0Uhe limiting 
viscosity at small rates of shear is given by 

00 

?, = S N (1.) d 7 
0 (2) 

and 

00 

k, = J r N ( r )  d l  
0 ( 3 )  

N ( r )  being the relaxation spectrum as introduced by walterss. This idealized model 
is a valid approximation of a Walters liquid B' taking very short memory into account 
so that involving 

00 

S rn N (7) dr n > 2. (4) 

have been neglected. 

The boundary conditions are 

Z = - L :  T - T I  
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and - 
Z =  + L : T = T ,  ( 5 )  

where TI and T2 are some constant temperatures. 

3. Solution of the Problem - 

Using the velocity components u, v ,  w in the following form 

u = r f f ( q )  W / L  I 
\ v = r g (3) W / L  
I (6)  

w = -  2 f  (7) W  j 

and non-dimensional temperature 

T - T, g =  - 
T2 - TI (T2 > TI) 

in Eqn. (I), we obtain 

1 ae aze 80 %+ - - + - 2  + PR ( 2 f  + E f ' $ )  -l a r V  a€ a t  1 I 
+PE{12.f'2+E2(g'2+f"2)}+APRC(24ffrf" 

i - 2 4 f f a  + E 2 ( 2 f f "  f U ' - 4  f '  f " 2 + 2 f g f g " ) )  1 0 ,  

where 

q = zlL, E = r l L ;  

R =  PWL - (Reynolds' number), 
T o  

P = "4, Cplk (Prandtl number), 

E = W2/Cp (T2 - TI) (Eckert number), 

A = ko/p L2 (Elastico-viscous parameter), 

and the corresponding boundary conditions are reduced to 

Following Verma & B a n ~ a l , ~  we seek the solution of (8) in the following form 

e  = F (?) + E  G (r)  + EZ H (q) (10) 

Where F(q), G (q) and H (q) are unknown functions to be determined. 

Substituting (10) in (8) and equating coefficients of like powers of E ,  we have 

FU + 4  H + 2  PRfF'+12 PEfI2+24 A P R E ( f f f f .  - f l a ) = O ,  (11) 
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and 

H W + 2 P R ( f H ' - f l H ) +  P E ( g ' Z + f " 2 ) + 2 A  P R E ( g w f ' n  

+ f g ' g W  - 2 f f  ff12) =o. (13) 
The boundary conditions are 

F ( - 1 ) =  O = G ( - 1 ) =  H( -1 ) ,  

F  (1.) = 1 and G( 1) = 0 = H(1). (14) 

We assume that the suction/injection parameter R  is small. 

Then all the physical quantities can be expanded in terms of the small parameter R  

X (q) = Xo + R XI + R2Xz + ... (15) 

Where X  stands for any f ,  g, F, G  and H. 

After substituting (15) in Eqns. ( 1  1 )  to (13) and equating coefficients of like powers 
of R, we obtain the following set of equations. 

F; + 4  Ho + 12 PEfi2 = 0,  (16) 

F f  4 H l  + 2 P f o F ;  + 24 P E f h f i f  24 A P E ( f , f ; f i  

- f h 3 )  = 0, (19) 

G," + P  ( 2  f, G; - f  ; Go) = 0,  (20) 

Hi' f 2 P ( f o H ;  - f6 Ho) + 2  P E ( g ; g i  + f i f i )  

+ 2 P \ P E ( f o f ; f 2 + f , g ; g , " - 2 f ; , f ; = ) = 0 ,  (21) 

F," + 4H2 + 2 P ( f o F i  + Fh f i )  + 12 PE ( f l 2  + 2  f ;  f ; )  

+ 24 A P E ( f o f l ; f ; f  f ~ f ;  f o " t  fo f i f ; - 3 f , $ 2 f ; ) = 0 ,  (22) 

G; t P ( 2 f 0  Gi +2GI, f, - f ;  G l - G 0 f i ) = 0 ,  (23) 

H"2 f 2 P ( f o H i  Hi fl - f ;  HI - Hu f i )  + P E ( g i 2  

+ 2 g ;  gi + f i 2  + 2 f ; ; f $ )  4 - 2 A  P E ( f ; ; f ~ f ~ + f ~ f ; ~ f :  

+ f o . f :  f i"  + f o g ;  g., + f o g ;  g ;  + f , g ; , ; g ; - 4  f 6 f t f f  

- 2  f i  fp) = 0, (24) 
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The corresponding boundary conditions are reduced to 

F o ( -  l ) = O = G o ( -  1 )  = H o  ( -  l ) ,  

E l ( -  l ) = O = G l ( -  1 )  = H I  ( -  l ) ,  

F 2 ( -  l ) = O =  G 2 ( - 1 ) = H 2  ( - I ) ,  

F ( 1  = 1 Go (1 )  1 . 0  = Ho (I), 1 
Fl (1)  = 0 = Gl ( I )  = HI ( I ) ,  i > 

I 
(25) 

F2 (1)  = 0 = G, ( 1 )  = H2 (1). J 

From (16) to (24) with (25), thesolutions of  Fo, FI,  Go, G, ,  G,, H, and HI are 

Fo = ( - 8q6 + 45q4 - 150q2 f 113 ) PE/40 + ( 1  + 1)/2, (26) 

FI = (4431" - 47251' + 23310q6 - 59850q4 - 19305q2 1 
I + 60127) P2E/67200 $- (261" - 66018 + 2508q6 1 

- 4080q4 4- 4170q2 - 1964) PEJ22400 + ( - q5 1 (27) 
4- 10'13 - 91) PJ80 + ( - 14101' f 8736q6 + 12601' 1 
- 991203' + 90534) A PEl22400, I 

J 

Go = 0 = GI = G2, (28) 
Ho = 3 ( - q4 f 1 ) PE/16, (29) 
H I  = ( 15q8 - 25216 + 2lO$ - 12601' + 1287 ) P2E/8960 + (998 

- 168q" 2347?' - 75 ) PE/4480 + (61' - 91' + 3) A PE/160. 

(30) 
The expressions of F2 and H2 are not presented here for the sake of brevity. 

Here, fo, A, f2 ,  go, gr and g2 have been taken from reference [2] and are given by 

fo = (y3 - 3.11) 1 4, (31) 
f ,  = (  - q 7 +  21q6- 39qs+ 191)/1120 + A (1816 - 3618 

+ 18?)/240, (32) 

fe = (63q1' - 1 5401' 4- 1 1 6821' + 157081" 22 1 5q3 + 32881)/5174400 

+ P2 ( - q7 + 211' - 39q3 + 191)/840 4- A ( - 2101' + 5040.11' 
- 98281' + 5376rS - 3789 )I470400 + A (4501' - 756q5 + 162q3 

+ 1431)/8400, (33) 

go = P,  (34) 

gl = P h4 - 6q2 + 5118, (35) 

and g, = p [ ( - 9vS + 847' - 222q4 - 30361% + 3138)/6720 

+ A ( - 21' + 15q4 - 13)/10], (36) 
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The rate 
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p = Ci LIW (Rotation parameter). 

of heat transfer in terms of Nusselt number is given by 

,- aT 
q =  - k  -. 

dz 

and r, is the distance of a given point from the centre of either disc. Now 
calculating Q* for, Z - L and Z = + L, Nusselt numbers for the lower and the 
upper discs can separately be obtained. 

The Nusselt number at the lower disc [ (Nu)-,  ] and at the upper disc 
[ (AT.) +, 1 are given by 

[ ( N u ) - , ]  = - 8.4 PE--1 + R ( -  5.1048 P2E + 0.1829 PE - 0.4P 

- 13.5771 PE) + R2 (- 2.1387 P3E + 0.5379 P2E 

f 0.0295 PE - 0.6451 P2 PE -0.0616 P2 + 0.0025 P 

+ 0.01 143 A P + 4.0875 A P% + 0.0236 r\ PE 

+ 3.6991 A PE) + ( E 2  + E%) [ - 0.75 PE - 0.3429 P2RE 

+ R2 (- 0.2325 P3 E + 0.0292 P2E + 0.0129 PE 

- 0.4857 P 2  PE - 0.0862 A P2E + 0.3513 A PE 

t 
+ 1.1057 Aa2 PE) ] (38) 

and 

[ ( N , & + , ]  = 8 . 4 P E -  1 + R(5.1048 P2E - 0.1829 PE - 0.4P 

+ 13.5771 A PE) + R2 (2.1387 P3E - 0.5379 P2E 

- 0.0295 P + 0'6451 p2 PE - 0.06159 P2 + 0.0025 P 

+ 0.01 143 A P + 4.0875 /? P2E + 0.0236 A PE + 3.66991 

x 2 PE) $- ( E2 -/- EQ ) [ 0.75 PE + 0.3429 P2RE 

+ R2 (0.2325 P3E - 0.0292 P2E - 0.0129 PE + 0,4857 P2 PE 

+ 0.0862 A P2E - 0.3513 A PE - 1.1057 A PE) I, (39) 

where 5 ,  = r,lL,. 
\ 
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4.  Numerical Discussion 

In this paper the problem of temperature distribution and heat transfer of steady 
laminar flow of an incompressible elastico-vicous liquid between two rotating porous 
discs have been studied The basic equations have Seen solved by the Perturba- 
tion method in which the suction/injection parameter 'R' is taken as the small Pertur- 
bation parameter. Also, in the present analysis two discs rotating with the same 
angular velocity in the same sense have been considered. 

Figs. 2 & 3 show the variation of Nusselt number i. e. (Nu)-, (Nusselt number at 
.the lower disc) and (Nu)+, (Nusselt number at the upper disc) against E/Eo for Prandtl 
number P ( = 5), elastico-viscous parameter A (= 0, 0. 5,O. 75), Eckert number E 
( = 0.01 ), rotation paramter p ( = 0.5 ) and suction/injection parameter 
R ( = - 0.25,0.25). 

Fig. 2 shows the variation of the Nusselt number at the lower disc aganist 
E/Eo, for the fixed values of P -- 5, E = 0.01, p = 0.5 and E, = 5. It is observed 
that (Nu)-, is negative and it goes on decreasing as we move away from the centre, 
for suction/injection. 

The variation of the Nusselt number at the upper disc against E/Eo, for the same 
fixed values of P, E, P and 5,; has been depicted in Fig. 3. It is observed (Nu)+, is 
positive throughout and it goes on increasing as we move away from the centre in 
suction as well as in injection case. 

---- NEWTONIAN 

- NON-NEWTONIAN 

Figure 2. Variation of Nusselt number at the lower disc against ElEo for fixed 
values of E = 0.01, P = 5  and to =: 5, (curve 1, 2, 3--R = -0.25; A = 0.75, 
0.5 &O and curve 4 , 5 , 6 - - R =  0.25, = 0 , 7 5 , 0 . 5 & 0 ) .  
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Fig. 3-Variation of the Nusselt nnmber at the upper disc against 4/Eo for the same 
fixed values of E = 0.01, P = 5 and Co = 5, (curve 1,2,3--- R = - 0.25, 
A = 0.75, 0.5 & 0, curve 4,5,6---R = 0.25; A = 0.75. 0.5 & 0). 

The values of the Nusselt number at the lower and upper discs for various values 
of P (= 5, lo), E (= 0.01, 0.02), (= 0.5, 1.0), R (= - 0.5, - 0.25, 0.25, 0.5). 
A (= 0.0.5, 0.75). to = 5.0 and E/Ea = 3.0 are presented in Tables 1 & 2. We con- 
clude from the tables that the value of the Nusselt number at the lower disc decreases 
with the increase of either P, or E, or p; when R (suction parameter) is fixed, but it 
increases with the increase of A ,  when P, R, E and f3 are constants. The value of 
the Nusselt number at the upper disc increases with the increase of either R (suction 
parameter), or P, or E, or p; for both the Newtonian and non-Newtonian fluids. 

Table 1. Nusselt number (Nu) of the power and upper disc for to = 5 and 4/E0 = 3 
b- 

in suction case 

R P E B A (Nu) +I (Nu)-, 




