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Effect of couple-stresses on, elastic stress distribution has been investigated in a semi-infinite
" medium under the action of a dynamic pressure on the boundary. As a particular example this

pressure has been assumed to be a pulse of pressure moving uniformly along the boundary. It is

found that the effect of couple-stress on shear stresses is predominant on the boundary surface.

Classical theory of elasticity assumes the stress tensor to be symmetric, though it was
pointed out much earlier by Cosserate brothers* that there may be physical phenomenon
where the stress tensor is not symmetric. For example, when the couple-stresses are present,
the shear stress on the surface x = constant in the direction of y is not equal to the shear
stress? on the surface y = constant in the direction of z. In the present paper the effects of
couple-stresses in a semi-infinite elastic medium under the action of a variable pressure on
the boundary has been investigated. As a particular case a pulse of pressure moving uni-
formly along the boundary has been considered. The effect of couple-stress on shear stresses
along the boundary, is proportional to the parameter of couple-stress for certain interval of
time. This effect is predominant on the boundary surface.

COSSERATE’S EQUATIONS OF MOTION L
The equations of motion in cartesian coordinates that hold in a stressed body when the

couple-stresses are taken into account besides the usual normal and shearing stresses!:3
is written.

The consideration of forces aloﬁg x and y axes gives the equations of motion3:4,
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if the body forces are neglected.
The consideration of the moments yields™4
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if the body couples are omitted.
It is to be noted that the equation (2) does not contain inertia terms. )
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FUNDAMENTAL EQUATIONS ' '

In a state of plane strain, the ndn—vapishing components (u; v) of the displacement
vector are functions of # and y. The strain components
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are associated with the stress components, while the local rotation component
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ig associated with the couple —stresses p» and p, . The couple;stress po produces cur-
vature K, parallel to the z-axis and x, produces the curvature K, parallel to y-axis. It has
‘been shown by Mindlin? that ‘ . o
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which is the dompatibility equation between curvatures. Compdtibiﬁty conditjoné between
curvatures and the strain components are foqnd by eliminating w from (4) and (5) as
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The curvatures have been assumed proportional to the couple stresses?, i,
1. ; 1 . ' ' . g
Ky, = 4B By, Ky =‘ 4B ”’.'/" . (8)

where B is a modulus of curvature of the material. When B = 0, the classical results are
obtained. ’ ‘ ‘

On substituting the values of K;and K, from (7) in (8) éﬁd usmg (3), we get ¥
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In the case of plane strain the normal strains (ezz, €yy) are related to the normal stresses

(Ux . Q’y) as

f\
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’ (10) .

oy = A (€ + €yy) +2peyy ]
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h = e and u =
w eré A = ) (1_2v and p = (1+V)

Young’s modulus and v is the P’i)lsson ra.tlo

are Lames elastic constants, Eis the

Symmetric Part ,
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of the shear stresses (Tzy , Tys) produces the shear strain ez, and hence
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of the shear stresses. producas the rotation o, and the relation between 74 and o« ma,y be
obtained with the help of equations (2), (5) and (8),

Also, the equatlons (2),.(7) and (8) yield

o1 [ % o2 Beyy e B
T, —T,, =48 | — y_ Y vy i
vy [ 2 ( o ) + ewdy - ’my] .

From (11) and (13), we get-on substituting from (5),
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" where B =2(14+v) —g— = —f— .

Substituting the values of o , Oy from (10) . and the values -of 74, , Ty from (16) in
(1), we get
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where ¢ and ¢ are functions of z , y and ¢, then equation (16) yield
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From (18) can be determined ¢ and ¢ if the boundary conditions are prescribed.

-

STATEMENT OF THE PROBLEM AND BOUNDARY
 CONDITEONS ‘

The distribution of stresses in the semi-infinite elastic medium y > 0 when a variable
pressure P (x,r)is applied to the boundary y = 0 is considered. The z-axisis ta.ken along
the boundary and the y-axis pointing into the medium.

‘The boundary conditions are
O'y-_—‘*'—-—'-P(w,‘r),'ﬂyazo "y:.O(my—_—O ‘ » (19)

‘where P (wx,r) is piecewise continuous and absolutely integrable in (— 00 < < )
- Moreover, all the components of stress, d1sp1a,cement. -and couple-stress tend to zero asy
tends to infinity.

- BOLUTION 0¥ THE PROBLEM

Performing over the equations (18), the Ijaplace transform, assuming that
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we get \wlv%mmwlv%—W% (21)
where ¢y = T de d'r, ¢1=f be © dr.
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Now let ¢z(§y10) fw wyp)e-
| - (22)
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be the Fourier transforms of ¢, and ¢, respectively.- Mulmplymg equatmn (21)”by eibsand
mtegratmg with respect to g between the hmlts (—®, ® ), we get
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The solutions of these equations are
$2 = A exp {—y (£ + p}i-} + By exp {y (é’“’ +p¥)i },
g = Ay expiy (Bt |+ Cexp {—y () }
T Oexp{y (@+p )+ Dexp{—y(E@+pHt} (23
where 4, B,, 4,,C, Cy, and D are constants, and ‘ )
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In order to satisfy the condition that the components of stress, displacement and couple-
stress tend to zero as y tends to infinity, we take
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The inversion theorem for the Fourier transform ylelds g
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/ Performing Laplace transform on (17) and substltutmg for ¢, and 5&1 from above We get-
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: where @ and v are the Laplace transforms of 4 and v respecﬁvely

w&.

~ Taking Lapla,ce transform of (10), (15) and (19) and substrtutmg for @ and ] from (28)
_we get - ;
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~where oy, ay, Tyx, ny, po and py are Laplace transforms _of correspondmg stress
“and couple-stress components,
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The boundary cond1t10ns (19)- yield ' '
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and P, (x,p)is the Laplace transform of P (%, ).
" Solving equations (27) wé get- N
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Substxtutlng the values of 4, C and D in (25) and (26), the components of displacement
- stress and couple stress on integrating and taking the inverse Laplace transform can be
calculated. For showing the effect of couple stresses we calculate 7oy — 7,

From (26) we get
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Asa partlcular case a pulse of pressure moving umformly with velomty ¥y ahmg the
boundary is considered, that is

: Pz, r)=Pé(z— By7)

where . \ By = vpley
Whlch gives ' :
CPy¢.p) =Po(EB +ip) | (31)
Substituting for € and D from (28) and for Py (¢ , p) from (31) in (30) and using the relation®

ff(s)w—a) dt = f (a)

o o -y
we get 'r,,y_uryz:__,‘/_li__ 52 (%)ﬂ{i‘%____ (32) =

on neglectmg terms contalmng higher powers of I, and wn’rmg

v = — P (BB — 2 (B2 — 1= (678 — 1) 2.

N

On taking inverse Laplace transform® we get from (32)

"1/% l/3?~y (—glv/2 e YR s %—1,
xy T Tyx = o .
’ 1\ 0o, 0<r<ulf. | 7
From this result it is obvious tl}at the shear stress along the bounding surface (y = 0) :is“ ‘

proportional to 1 exp { — y (r ==%/B,) } , providéd ris greater than z/8,. In .
other words it can be said that the shear stress at any‘ point on the bounding surface is
proportional to I, the parameter of couple~stress. At any point inside the semi-infinite
m@ium 7y — Ty is proportional tol exp (— y/4/21.). That is, the ehect of couple-
stress is predominant on the bounding surface because the parameter I, is generally small.
When, 0 <r< x/ﬂl (ov0 <t < w/’vo) ey = 7yz. Which is the classical result. It
means that there is no effect of couple-stress on shear stresses when 0 < 7 < ac/)S1

ACKNOWLEDGEMENT
Author expresses his sincere thanks to Dr. G. Pana for the help and guidance in pre-
paring this paper

) REFERENCES

. CossEraT, E., & Cosserar, F., “Theories des Corps Deformables” (A. Herman et fils.), Paris, 1909,
2 MixpLiN, R. D., Exper. Mech., 3 (1963), 1.
3. MiwpuiN, R. D. & TiersreiN, H. F., Arch. Rat. Mech. Anal., 11 §1962) 415. .
4. Misiov, M., Rev. Mech. Appel., 8 (1963), 921. -
5. SNEDDEN, L. N.,“Fourier Transforms”, Soc. 50, (McGraw-Hill Book Company), New York, 1951.

EgDEII;YI, “Tables of Integral ’l’ransfotms", Vol. I Bateman project (McGraw-Hill Book Company), New
ork, 1954.

Sy,



