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Magnetohydrodynamic Flow Past a Permeable Bed
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Abstract. The paper evaluates mass flow velocity heat transfer rates and velocity/
temperature distributions in the viscous, incompressible and slightly conducting
fluid past a permeable bed in three different configurations namely (1) Couette
flow (2) Poiseuille flow and (3) free surface flow, under the influence of a uniform
transverse magnetic field. To discuss the solution, the flow region is divided into
two zones : Zone 1 (from the impermeable upper rigid plate to the permeable bed)
in which the flow is laminar and governed by Navier-Stokes equations, and Zone 2
(the permeable bed below the nominal surface) in which the flow is governed by
Darcy law. The paper also investigates the effects of magnetic field, porosity and
Biot number on the physical quantities mentioned above.

1. Introduction

The importance of flow through and past porous media in technology, geo-hydrology,
petroleum industry and geo-physics is indisputable. Cooling problems assume grow-
ing importance in the development of high speed vehicles. It is well known that part
of the power which is necessary to overcome the drag of a space vehicle is converted
into heat by internal friction within the boundary layer which surrounds the vehicle.
This heat flows partially from the air layer into the surface of the vehicle by an
amount which increases rapidly with the increase of the vehicle speed. As a conse-
quence cooling problems arise in almost every component of the space vehicle. The
basis for any calculation in engineering design, the aim of which is to determine the
cooling requirements, is always a determination of the convective heat transfer from
the heated boundary layer into the skin of the space vehicle. Extensive literature is
available on this heat transfer along surfaces of idealized shapes by calculation or by
experiments. Of the many solutions proposed, transpiration cooling gives an effective
method in which the affected surface is manufactured from a porous material and
cold fluid is ejected through the wall to form a protective layer along the surface.
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When a fluid flows between impermeable surfaces, the no-slip condition is usually
valid on the boundary. But when it flows over a permeable surface the no-slip
boundary condition is no longer valid on that surface since there will be a migration
of fluid tangential to the boundary within the permeable surface. That is, there will be
a net tangential drag due to the transfer of forward momentum across the permeable
interface. The velocity inside the permeable material will be different from the velo-
city of the fluid in the channel and we have to match the two velocities at the
interface.

Beavers & Joseph! have experimentally investigated the effect of the tangential
velocity on the Poiseuille flow over a permeable block where the upper wall is
impermeable and stationary. They have shown that the mass flow rate is greatly
enhanced over the value it would have attained if the block were impermeable, indicat-
ing the presence of a boundary layer in the permeable block. They have also shown
that within this boundary layer the velocity at the permeable interface is greater than
Darcy velocity. Rajasekhara et al.? have studied the effect of slip velocity on plane
Couette flow taking the lower block to be a permeable surface and the upper block
an impermeable surface moving with a uniform velocity u,. Saffman3, Taylor* and
Rajasekhara® have investigated flow past horizontal porous beds. Rudraiah
& Veerabhadraiah® have evaluated the temperature distribution by considering the
incompressible viscous fluid through a two-dimensional parallel channel by an imper-
meable moving upper plate y = h and the interface y = 0 for the permeable material
whereas Vidyanidhi et al.” considered the same with stationary upper plate.

This paper makes a different attempt. It studies the velocity and temperature "
distributions in the viscous incompressible slightly conducting fluid past a
permeable bed in three different configurations namely, Couette, Poiseuille and free
surface flows, under the influence of uniform transverse magnetic field. To discuss the
solution, the flow region is divided into two zones. In Zone 1, the flow is laminar and
is governed by the Navier-Stokes equations from the impermeable upper rigid plate
to the permeable bed. In Zone 2, the flow is governed by the Darcy law in the
permeable bed below the nominal surface. We have evaluated the velocity distribu-
tions, the mass flow rates, the fractional increase in mass flow rates through the
MHD flows with a permeable bed over what it would be if the flows were ordinary
MHD flows with the impermeable lower boundary, temperature distributions and the
rates of heat transfer. We have investigated the effects of magnetic parameter,
porosity parameter and the Biot number on the physical quantities mentioned above.

A flow configuration is shown in Fig. 1.
2. Formulation and Solution of the Problem
Zone I : Couette Flow

We consider the flow of a viscous incompressible, slightly conducting fluid between
a plate moving with velocity x5 and a permeable bed at a depth 4 under the influence
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Figure 1. Flow configuration.

of a uniform transverse magnetic field. The interface is taken as the x-axis and a
line perpendicular to that as the y-axis. The fluid being slightly conducting, the
magnetic Reynolds number is much less than unity so that the induced magnetic field
can be neglected in comparison with the applied magnetic field (Sparrow & Cess8).

In the absence of any input electric field, the equations governing the motion and
the equation of energy are :
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and the continuity equation is

vig =0 @

where? is the velocity of the fluid, p the fluid density, P the pressure, v the kinematic
coefficient of viscosity, u. the magnetic permeability, J the current density, o the
electrical conductivity, H the applied magnetic field, T the temperature, Cy the speci-
fic heat at constant pressure and Kr the thermal conductivity of the fluid. The last
term in Eqn. (2)is due to Joule’s dissipation. The flow is steady in the x-direc-

. . 9 . .
tion due to a constant pressure gradient % and u is the component of the veloclty

in the x-direction. Now the Eqns. (1) to (3) reduce to

Gl suH; 1 9 4
oY* w YT T @
*T p o eu \* _ ouzHi 5
oyt ITT( oy ) Kk (%)



72 R Venugopal & D Bathaiah

ou '
and W =0 (6)
Further, —aa; ( ) = 0, since the plate and the interface are infinitely long.

The boundary conditions are :

U = uygaty==rh (72)
au * e,
[7;: ],,., - UK (up - Q) (Beavers & Joseph! condition) (7b)
(3 1d
=g e T (7d)
[ ]y.:o VK ‘( B ) -
where 9 = — I:— —g% , « is the slip parameter (1), u5 the slip velocity, 8 the Biot

number, T the slip temperature, T, the ambient temperature and K the porosity of
the material,

We introduce the following non-dimensional quantities :

*

u* = *

QIS

u y - 14 -
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. T —Te | 8)
%k
and T* == T, (
where U is the characteristic velocity.

In view of Eqn. (8), the Eqns. (4) and (5) become (after dropping the superscripts *),

%;% - Mu=—P | ©
2
ma G- —pp[( ) e ] (10)
where
M =--3#— (Magnetic parameter)
dp
P= dx
R Uh
v
vz b
P’ = m (Prandtl num el‘)
1
and

E = LKC;’— (Eckert number)
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The non-dimensional boundary conditions are :

u = wui at y = 1 (lla)
du. — p
dy Jy0 a\ U — 5 ) 11b)
dar '
S I R | (11d)
Ty — T

? and g = LE (Porosity parameter)

where Tp = _T]_:_To—

Solving the Eqn. (9) using the boundary conditions (l11a) and (11b), we obtain the
velocity distribution

P —_—
“ = | (% ) e D)
: PN\t s o |
AU LA 12)
where
ue = aMui — Pa(l — cosh v/ M) + Pa /M sinh v M
5 =

avM (v M cosh /M + gz sinh +/ M) -
' (13)

Mass flow rate : The non-dimensional mass flow rate F, per unit width of the
channel is
1
F = [ udy
0
= [{y/M sinh v M — aa (1 — cosh /M)} aMus

+ P{avM (a* — 1)sinh vM
+ (Ma + Ma — 2a%) cosh /M + o« (2a* — M)}]

= aM3 2 {/M cosh /M + ax sinh vM } (14)

To study the effect of the porous boundary we compare this mass flow rate with
the mass flow rate when the permeable boundary is replaced by an impermeable one.
If F* denotes the dimensionless mass flow rate per unit width when the permeable

boundary is replaced by an impermeable one, we have

(Mu: — 2P) (cosh /M — 1) + P+/M sinh vM 1s)
M32 sinh v M o

Fg =
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In the non-magnetic case it is found to be equal to -uT‘ + % which agrees with the

result of Rajasekhara et al.2
Temperature distribution : Using the boundary conditions (l1lc) and (11d) and
solving the Eqn. (10), we get the temperature distribution

P.EP? (1 -yz) P,E

T=1-—aTp(l — y) + "M T 4M cosh? /M

X [A2M (cosh 24/M — cesh 2v/M y) .
+ Ba2g® {(1 — cosh 2¢/M (1 — y)}

+ 24Bug +/M {sinh ¥M + sinh M (1 — 2))}]

P,EBao. . _
— —————=—=—={ AM - B h .
M cosh /M [ “a v Msinh VM + 2P

» — 2P.EP
x cosh M 1= + ‘———'—’————:_
v ] =+ 355 cosh v

% [A+/M (cosh /M — cosh 4/M y) + Baa sinh {v M (1 — y)}]
_ (16) -

where

1 P.EP*
To= 755 v ¥

P,B - L
— [(4*M — Ba’a) sinh? /M
(L 7+ Ba) cos vtV «?a’) sinh® v/

+ 2A4Bea +/M sinh v/M]

- P,EBav. I
M (1 + Ba) cosh M~ [AM — Baa+/M sinh y M

4 2P cosh /M] + 2P.EP _
T U ¥ pa) M7 cosh v/

X [4+/M (cosh /M — 1) + Bog sinh 4/M] an

and
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Rate of heat transfer : From the point of view of applications in technology it is
of interest to know the rates of heat transfer g between the fluid and the nominal
surface and ¢g* between the upper plate and the fluid.

From Eqn. (15) we get

T }
¢« =g — e )
and [ ]
y=1
= BaTs — ___fﬁ______ [(P* + A2M?3!2 — 2PBax) cosh /M
cosh v/ M
+ (B%a?a® + 2PA) v/ M sinh /M -+ 2PBax]. (19)

Zone 1 : Poiseuille Flow

In this part we consider the flow of a viscous incompressible, slightly conducting
fluid between a stationary upper plate and a permeable bed at a distance 4 below the
plate, under the influence of a uniform transverse magnetic field. All the results can
be obtained from those of Zone 1: Couette Flow by taking ue = 0.

The velocity distribution is

l — —_
S — h
o M cosh Vi [P (cosh /M — cosh v/M y)
— waBy v M sinh { M (1 — »)}] " (20)
where
Upy = P [x+/Msinh vM — a (1 — cosh \{_JT[)] 1)
av'M (v/ M cosh /M + aa sinh v/ M)
and Bos = upy — —}—:-
2]

Mass flow rate : The non-dimensional flow rate Fy per unit width of the channel
is given by

Fo = P [a/M (ax — 1) sinh /M + {M (a + «) — 2a%} cosh M

+ @ (2a> — M) = a M*'? (/M cosh 4/ M + aa« sinh v/ M)
(22)

The non-dimensional mass flow rate F,’,“,, per unit width of the channel, when
the permeable boundary is replaced by an impermeable one, is given by
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Fo. = P [v/M sinh /M — 2 (cosh /M — 1)]
o0 M3 sinh /37

In the non-magnetic case it takes the value "1% which again coincides with the
corresponding result of Rajasekhara et al®.

Temperature distribution : The temperature distribution is

2 ==
TS =1 - paT3, (1 = y) + PEEL — 5

P.E
4M?2 cosh® /M

[Biaza*M {1 — cosh 2/ M (1 —y)}

<+ P2 (cosh 24/ M — cosh 24/M y) — 2BoPaur/M {sinh v M
4+ sinh o/ M (1—2y)}+8BoPax / M coshy/M sinhy/ M (1 — y)
— 8P? cosh /M (cosh /M — cosh v/ My)

BoPnEaa (1 — y)
M cosh /M

[Boax /M sinh VM

<4+ P (1 — 2 cosh vM)] (23)
where the slip temperature T%, is given by

i 1 n P,EP? P.E
8o 1 + Ba 2M (1 + Ba) 4M? (1 + Ba) cosh® v M

x [(Bia®x* M — P2) (1 — cosh 2y M)
+ 4ByPaay/M (sinh 24/M — sinh /M)
— 8P cosh /M (cosh /M — 1)]

ByP,Eaqo _ % sinh M
+ (L % ba) cosh yar_ LLweav Msinh ¥
+ P (1 — 2 cosh y/M)] (24)

Rate of heat transfer : The rates of heat transfer go and g3 at the interface and
upper boundary are given by

go = BaT%, (25)

and

PrE B
e StE. P (YIF +
3% coeh y3E VM D)

g3 = BaTpo —
— 2BoPax v/ M} cosh y M + {Bja*o*M — 2P% sinh v M

+ 2BoPax Y M] (26)
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Zone 1 : Free Surface Flow

In this part, the flow of an incompressible viscous and slightly conducting fluid past
a porous bed at a depth /4 from the free surface is considered.

The equations of momentum and energy governing the flow are respectively (9)
and (10) with u and T replaced respectively by u; and Ty, where us and T represent
respectively the velocity and the temperature fields in the flow,

The relevant non-dimensional boundary conditions are

du _ = 27
dy =0aty=1 (27a)
duy P
& = aq (unf -z ) at y = . (27b)
Tr = laty = . (27¢)
and %7;7’ = BaTpr at y =0 (274

where up, and Ty are respectively the slip velocity and slip temperature in the present
case,

Using the boundary conditions (27a) and (27b) and solving Eqn. (9) (with u
replaced by u,) we obtain the velocity distribution .

_ Psinh /M — Bsea o/ M cosh /M (1 — y)

(28)_7

Msinh M
where
us, P Sﬁ sinh_\/.Tl + _oc_\/Tl cosh \/_ﬂ)__ (29)
a vM (/M sinh y M + ax cosh y M)
and

p
Bf = ups — e

Mass flow rate : The non-dimensional mass flow rate F; per unit width of the
channel is given by

P[(«M + aM — a*«) sinh VM + a’a \/ﬁc@ VMl

Fr= aM?% (y/ M sinh v/ M -+ ax cosh ¢/ M)

(30)

The non-dimensional mass flow rate F}, per unit width of the channel, when the

permeable boundary is replaced by an impermeable one, is given by

P [v/M cosh yM — sinh M]

F?o == —
M3/2 cosh /M

@31
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In the non-magnetic case this reduces to —g- which is four times the corresponding

value in ordinary Poiseuille flow.
Temperature distribution : Using the boundary conditions (27¢) and (27d) and v
solving Eqn. (10) (with T replaced by 7y) we get the temperature distribution

Tr = 1 — BaTss (1 — )

P.E - - . —
— e pe 1 — 2 h?
+ 4M?12 sinh? / M [ v M ( y?) sinh?2 o/ M

+ Bja2a® /M {1 — cosh 2/ M (1 — y)}
— 8B Pag sinh M {1 — cosh M (1 — y)}]

_ _ByP/Exa (1 — y) [2P sinh vM

M sinh v M
— Braay/ M cosh ¥ M] (32)
where
Tay = — 4 P.E [P~ \/Msmh v

1+ Ba 2 (1 4+ Ba) M2 sinh yM

— 2B;Paa {2y M sinh VM — (BfMaa + 2) cosh \/M + 2}
(33) -

Rate of heat transfer : The rate of heat transfer gs, at the nominal surface, is
given by

gr = BaTs; — 2P.EBj} s a* M 12 coth v M (34)

Fractional increase : To make a comparatlve study of the mass flow rates in all the

three flows considered and to find the effects of the porous boundary on these mass
flow rates we have evaluated the following fractional increases in the mass flow rates :

(i) To study the effect of moving upper plate on the mass flow rate, we have
calculated ¢o. This is the fractional increase in mass flow rate through the plane
Couette flow over what it would be if the flow were Poiseuillean, and this ¢o is gnven

by
$o = %;@
= raM { /M sinh /M + ga (cosh VM — l)}
[a VM (aot =~ 1) sinh vM

+ (M a4+ o) — 2a% } cosh VI + a(2a>~M)]
~ S (35)
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where

Uy

r ey

It is found that this quantity ¢, becomes independent of « and takes the value

— rMﬁ when ¢ = HM o
vMcoth v M — 1 1—+/M cosechy/M

In the- non-magnetic case it is observed that ¢, becomes independent of « and
takes the value 3r when @ = ¥ 6 which agree with the results of Rajasekhara er al.
This phenomenon occurs when the velocity at the permeable wall of the channel is
equal to the Darcy value within the permeable material.

(ii) To examine the effect of the porous boundary on the mass flow rate through
plane Couette flow, we have evaluated ¢%. This is the fractional increase in the
mass flow rate through MHD Couette flow with a permeable bed over what it would
be if the permeable bed is replaced by an impermeable one and is given by

F — F3 |
% = —F,,—o

0
= 4/M (cosh /M — 1) [aMr + VM« sinh M
+ a(cosh VM — 1)] = [a (VM cosh 4/M + a a sinh /M)
{(rM — 2) (cosh v/M — 1) + +/M sinh /M } ] (36)
This is found to be independent of « and it takes the value

(cosh M—1) (rM—1 + cosh v/M)
cosh vM [ (rM —2) (cosh /M — 1) + +/M sinh vM ]

when WS e = o

In the limiting case as M — 0, the above quantity is seen to take the value

2 . :
(3 4 6r) = (1 - 6r) and thisis attained when a} = TF2r which agrees with

the result of Rajasekhara ef al2. It can be noted that this occurs when the velocity
profile has a zero gradient at the permeable wall.

Rajasekhara et al® have observed that the rectilinear flow in the channel breaks
down under certain conditions when aj > {2 + (1 + 2r) } because the average
size of the individual pores within the material becomes at least equal to the channel
width. However , since g%y is greater than g} for small M, such a breakdown of
rectilinear flow may be prevented when the average size of the pore is not too large.

(iii) In order to study-the impact of the porous boundary on the mass flow rate
through MHD plane Poiseuille flow, ¢%, is computed. ¢%, denotes the fractional
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increase in the mass flow rate through MHD Poiseuille flow. with a permeable bed
over what it would be if the flow were ordinary MHD Poiseuille flow and is given by

~ F%,
*» _ Lo ™ loo
#o = TH,
= M (cosh yM — 1) [ \/17« sinh v/ M + a (cosh vM— 1]
~[a (VM cosh /M + a «sinh /M) { /M sinh vM
— 2 cosh AT+ 1}] | (37
. 3(a+2 |
in the non-magnetic case this becomes E%q_—ta_:))“ : !

which agrees with the result of Beavers & Joseph!. The quantity ¢¥, becomes
independent of « and takes the value

(cosh M — 1)
cosh /M (M sinh M — 2 cosh / M+ 2)

M cosh v M

‘when @ = — V7 |
‘cosh v/Af — 1

In the non-magnetic case thls fractional increase tecomes independent of « and takes

the value 3 when @ = /2. This result again coincides with the one obtained by
Beavers & Joseph!.

(iv) With a view to obqerve the effect of the poros1ty of the lower boundary in
the free surface flow, we have evaluated 4%, which denotes the fractional increase in
the mass flow rate through MHD free surface . flow with permeable' bed: ower it . would
be if the flow were ordinary MHD fréé surface flow..  This. 670 s '

Fr — F}

F},

I

v Msinh v/ M (aM cosh vM + asinh /My
a (ax cosh v M + /M sinh v/ M) (v M cosh y M — sinh /M)
(38)

In the non-magnetic case this reduces to éﬂ%tﬁ‘_)_
S a :

The quantity ¢%, becomes independent of « and takes the value

sinh v M

— =V wheng = VM. In the non-magnetic case
(VM cosh /M — sinh \/ M)
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*  becomes independent of « and tends to infinity when a tends to zero. Therefore,
if ¢fo in the non-ms_gnetic case is to be independent of « we have noticed that the
mass flow rate F% tends to zero when a tends to zero.

It is interesting to note that, in the non-magnetic case, the relevant fractional
increases are 3r in the case of Couette flow and 3 inthe case of Poiseuille flow while
it tends to infinity in the case of free surface flow.

We have studied the effects of the magnetic parameter M, the slip parameter
= and the porosity parameter a on all the physical quantities obtained. The effects
of P.E (the product of Prandtl and Eckert numbers) and the Biot number B on the
slip temperature, temperature distribution and the rates of heat transfer coefficients
have also been studied. The behaviours of the various quantities are depicted in
Figs. 2 to 10.

3. Conclusions

Conclusions were drawn on the basis of numerical work and figures.

Slip Velocity

It is observed that the slip velocities decrease with the increase in the magnetic
parameter. The slip velocity in the free surface flow decreases more rapidly than
that in the Couette flow which in turn decreases more rapidly than that in the
Poiseuille flow. This change in rapidities is clearly visible for small values of M.
It is seen that the slip velocities in the three flows increase with the increase in a
whereas they decrease with the increase in a. We have also observed from Fig. 2
that for any given set of values of the parameters the slip velocity is greatest in the
case of Couette flow and least in the case of Poiseuille flow.

*SLIP VELOCITY

Figure 2. Slip velocity plotted against the porosity parameter. I
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Figure 3. Velocity profiles for different Figure 4. Velocity profiles for different
values of the magnetic parameter. values of the porosity parameter.

Velocity Distribution

We have observed that the velocities in the three flows decrease with the increase
in M, throughout the flow field (Fig. 3). In the case of Couette' flow we have
noticed that the velocity first decreases and then increases with the increase in
y while the velocities in the other two flows decrease with the increase in y. Itis
seen that the velocities in the cases of Poiseuille and free surface flows decrease
with the increase in y for all values of «. The decrease in the case of Poiseuille flow
is found to be more rapid than that in the case of free surface flow. In the case
of Couette flow the velocity first decreases and then increases with the increase
iny. Fig. 4 shows that the velocity in the case of Poiseuille flow first increases and
then decreases with the increase iny for sufficiently large values of a, whereas it
decreases with the increase in y for smaller values of . In the case of free surface
flow, the velocity increases with the increase in y for sufficiently large values of a
whereas it decreases with the increase in v for smaller values of a. In the case of
Couette flow, the velocity first decreases and then increases with the increase in y
for sufficiently small values of o, whereas it increases with the increase in y for
larger values of . We have seen that velocities in all the three flows increase with
the increase in « whereas they decrease with the increase in a throughout the flow field.
We have also observed that for any given set of values of the parameters, the
velocity at any given point of the flow field is maximum in the case of Couette flow
and minimum in the case of free surface flow.

Mass Flow Rate

We have noticed that the mass flow rates in the three flows decrease as the
magnetic parameter increases. The decrease in the case of free surface flow is more
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rapid than that in either of the other two flows. This rapidity is clearly visible for
smaller values of M. Itis seen that the mass flow rates in all the three flows increase
with « for sufficiently small g while they decrease with the increase in « for larger
values of 2. We have noticed that the mass flow rates in all the three flows decrease
with the increase in @ We have also observed the fact that the mass flow rate is
maximum in the case of Couette flow and least in the case of Poiseuille flow.

Fractional Increases

We have noticed that ¢, alone increases with M while the others decrease as shown
in Fig. 5. We have observed that ¢, decreases with the increase in « for all
values for g. But the others increase with « for sufficiently small values of g and
decrease for larger values of ¢. We have also observed that ¢o increases with
the increase in a while ¢}, %, and ¢, decrease with the increase in ¢ for all value
of a.

Slip Temperature

We have observed that the slip temperature increases in the case of Couette flow,
first increases and then decreases in the case of Poiseuille flow and decreasesin the

sor

FRACTIONAL INCREASE

2k
o8 L
#,
04 1 1 1 )
| 2 3 9 1)

Figure 5. Fractional increase against magnetic parameter.
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Figure 6. Slip temperature against « for different values of a.

case of free surface flow with the increase in M. For small M the increase in the
case of Couette flow is more rapid than in the case of Poiseuille flow. We have
seen that the slip temperatures increase with the increase in the product of Prandtl
and Eckert numbers. From Fig 6. we have noticed that the slip temperatures in
all the flows increase with « for sufficiently small values of o while they decrease
for larger values of . We have also observed that the slip velocities gradually
increase with the increase in o for all values of the Biot number . We have seen
that the slip temperature decreases with the increase in g or B for all values of o.
We have also found that for a given set of values for the parameters, the slip tempera-
ture is maximum in the case of Couette flow and maximum in the case of Poiseuille
flow.

Temperature Distribution

We have noticed from Fig. 7 that the temperature increases with the increase in M
in the case of Couette flow while it decreases as M increases in the case of free surface
flow. At any point of the flow field this increment is seen to be greater than
the corresponding decrement in the temperature of the free surface flow. But in the
case of Poiseuille flow we have observed that the temperature distribution is not
uniform, in that it is neither increasing throughout the field nor decreasing throughout.
In fact, if we consider two temperatures of this flow corresponding to two different
values of M then we find that the one with smaller M is smaller than the other
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at points sufficiently close to the nominal surface. This trend, however, gets reversed
and the temperature decreases as M increases at points sufficiently away from the
interface. In the case of Couectte flow the temperature increases sharply and then
decreases with the increase in y for all values of M. In the case of Poiseuille flow
.the temperature increases with the increase in y for all values of M. But in the case
of free surface flow the temperature first increases and then decreases with the
increase in y for small values of M and increases with y for larger values of M. We
have observed that the temperature 'proﬁles of the three flows are linear and
coincident for P,E = 0. We have also seen that the temperatures increase with
the increase in P.E, the increase being maximum in the case of Couette flow and
least in the case of Poiseuille flow at all points of the flow field. We have noticed that
the temperatures increase with the increase in the slip parameter «. It is seen from
Fig. 8 that the temperatures decrease with the increase in . It can also be seen that
in each flow this fall in temperature increases with the increase in a at all points of the
flow field. We have observed that the temperatures decrease with the increase in g in
all the three flows. it can also be noticed that in any flow the decrease in the
temperature decreases as £ increases.

We have also found that at any point of the flow field the temperature is greatest
in the case of Couette flow and least in the case of Poiseuille flow.

The Rates of Heat Transfer

We have observed that g and g% increase with M while gy and g* decrease as

shown in Fig. 9. But to start with go increases with M and then gradually decreases
as M increases. We have found that g, go and ¢y increase with the increase in- P,E,

whereas g* and q§ decrease. We have also noticed that g* decreases very fast
with the increase in P,E. We have seen from Fig. 10 that the non-uniform nature
of gr as « increases for different values of . We have also noticed that g and ¢,
decrease with the increase in « for sufficiently large values of g whereas they increase
for smaller values of @. It is seen that ¢, go and g increase with the increase in a
or 8.

Zone 2 : Couette Flow

The flow region is the permeable bed immediately below the nominal surface. The
flow in this region is governed by the Darcy low.,
The equations governing motion are

- -E ()

w
u_w_ L (22) M
K n I (40)

(39)
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where u and 7 are now the velocity and temperature distributions in Zone 2.
The boundary conditions are

= ngaty=0

“u = Q (finite) at y = —

T=Tyaty =0
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Figure 10. Heat transfer coefficient
at the interface against « for different
values of a.
“ homHid =0 @1 -
(42a)
(42b)
(42¢)
(42d)

where 3 is the boundary layer thickness just below the nominal surface. We assume
that this thickness is the same for both the velocity and temperature distributions.

In view of the non-dimensional quantities glven in Eqn. (8), Eqns. (39) to (42)

reduce to

d®u

-2;2-~b’u= - P

(43)

Go-n(&)Yeme]

u=u3aty=0

(45a)
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: P —3
‘ T, - T
T=TB=T_7°—“aty=0 ‘ (45¢)
= Qaty= — 3* : (45d)

after dropping the superscripts ‘*’ and taking 5% = a® + M.
Using the conditions (45) and solving the Eqns. (43) and (44) we obtam the velocity
and temperature distributions :

u = [B*a?b®sinh b (6* + y) + Pa? sinh h3*

— MP sinh by] + a®b? sinh b6* (46)
and '/
T =( b )T. + — ey 1B {cosh 26s*

— cosh 25 (3* -+ 3)} + M P2 (1 ~ cosh 2by)

— 2B*a%°MP {cosh b3* — cosh b (5* -+ 2y)}

— 2Pg?b%y* sinh® b3*

4+ 84a*MP2 sinh b5* sinh b y B

-+ 8B*a? b2P sinh b3* {sinh 3* — sinh b (* 4 y)}]

+ ’fl‘;{ [B* bt — MP® — g'b2pes+*

+ 4B*¢*'b*P — 4a2MP?] . Ty
where 4

B* = yp — bL;

Expression for the boundary layer thickness : We know that, at the edge of the
boundary layer, the shear stress has to be zero. In other words

du ™
& = Oat y = — &
Therefore the expression for 3* is given by
2 (B*a®h® — MP) /2
*x l: ( aMPba ) ] - (48)

neglecting the terms of 0 (8*4)



Magnetohydrodyriamic Flow » ' ‘ 89

Zone 2 : Poiseuille Flow

The velocity and temperature distributions and the expression for the thickness of
the boundary layer are obtained from those of the Couette flow by taking u:; to be
zero. Thus Eqns. (46) to (48) give the velocity, temperature and the thickness of the
boundary layer respectively for this flow. B*,-Tp and 8* are respectively replaced by
BY, Tpo and 8} where B¥ =upy — 5}:_ and 3¥ is the bduﬁdary layer thickness in the
flow under consideration.

Zone 2 : Free Surface Flow

The non-dimensional equation governing the flow and the energy equation are (43)
and (44). The relevant non-dimensional boundary conditions are

u = ugpat’y =0 : (49a)
P 3 =
T,, — To
T = Tpr = T‘:—ﬁ aty =0 (490)

-

and T=0 at;j; = —8% (49d)

The governing equations and the boundary conditions suggest that the velc;city,
temperature and the thickness of the boundary layer corresponding to this flow are
respectively given by (46), (47) and (48) by replacing B*, Tp and 8* respectively by

B*%, Tpr and 3% where B} = ug, — b—]: and 3% is the non-dimensional thickness of

the boundary layer in the present case.
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