INFORMATION GENERATING FUNCTION FOR THE r-POWER DISTRIBUTION

B. R. K. KASHYAP

University of Jodhpur, Jodhpur

æ

K. C. MATHUR

Defence Laboratory, Jodhpur

(Received 21 July 1969)

In a previous paper the authors defined an information generating function for giving Kapur's entropy of order a and type β for a given distribution P. In the present paper they deduce the corresponding generating function for the *r*-power distribution $P^{(r)}$ obtained from P. The generating function is specialized to the cases of Rényi's and Shannon's entropies. Entropy of $P^{(r)}$ is also obtained for some special distributions P.

Information generating functions are useful in obtaining the entropy for a given probability distribution. However, if the generating function is known, it can be inverted uniquely to give the corresponding probability distribution. Golomb¹ and Sharma² have worked on information generating functions which give respectively Shannon's³ and Rényi's⁴ entropy. In a previous paper Mathur & Kashyap⁵, we gave a generalised information generating function from which Kapur's entropy⁶ of order α and type β can be found out for a given distribution P. In the present paper we give a further generalisation of the generating function which gives Kapur's entropy for the r-power' distribution $P^{(r)}$ when the distribution P is known. The generating function is specialised for the cases of Rényi's and Shannon's entropies. We append some examples in which the entropies of the distribution $P^{(r)}$ are calculated corresponding to the cases when P is one of the standard distributions, e.g. the uniform, the geometric, the exponential, the Gamma and the normal distributions. Finally, it is observed that the r-power distributions corresponding to the Gamma and the normal distributions are themselves Gamma and normal distributions respectively with their parameters modified. The same result holds for the exponential distribution as a particular case of the Gamma distribution.

GENERALISED GENERATING FUNCTION

Let

$$\boldsymbol{P} = \left\{ p_i \right\}_{i=1}^{N}$$

be a probability distribution complete or incomplete, and

$$P^{(r)} = \left\{ p_i' \right\}_{i=1}^{N}$$

be the r-power distribution obtained from it where

$$p_i' = p_i'/\Sigma p_i'$$

The authors⁵ have earlier defined the generalised information generating function for P as

$$\hat{M}_{\alpha,\beta} (P; u) = \left(\frac{\Sigma p_i^{\alpha+\beta-1}}{\Sigma p_i^{\beta}}\right)^{\frac{u}{1-\alpha}}, \alpha \neq 1, \beta > 0, \alpha+\beta=1 > 0$$
(1)

from which we obtained

$$\partial/\partial u M_{a,\beta}(P;u) \Big|_{u=0} = H^{\beta}_{a}(P) = \frac{1}{1-\alpha} \log \frac{\Sigma p_{i}^{a+\beta-1}}{\Sigma p_{i}^{\beta}}$$
 (2)

where $H_{\alpha}^{\beta}(P)$ is Kapur's entropy of order α and type β . In the above and subsequently ' Σ ' stands for summation over i=1 to N and natural logarithms are used, so that the entropies are in natural units.

From (1) we have the generating function for the distribution $P^{(r)}$ as

$$M_{a}, \beta (P^{(r)}; u) = (\Sigma p_{i}^{r})^{u} \left(\frac{\Sigma p_{i}^{r}(a+\beta-1)}{\Sigma p_{i}^{r}\beta} \right)^{u/(1-a)}$$
(3)

If the value of r satisfies the inequality

$$\Sigma p_i^r \leq 1$$
, then $P^r = \left\{ p_i^r \right\}_{i=1}^N$

a probability distribution and we may write

$$M_{a}, \beta (P^{(r)}; u) = (\Sigma p_i^{r})^u M_a, \beta (P^r, u),$$

whence using (2) we have for the entropy of $P^{(r)}$

$$H_{\alpha}^{\beta} (P^{(r)}) = H_{\alpha}^{\beta} (P^{r}) + \log \Sigma p_{i}^{r}$$

$$H_{\alpha}^{\beta} (P^{(r)}) = H_{\alpha}^{\beta} (P^{r}) - H_{\alpha}^{\beta} (\Sigma p_{i}^{r})$$
(5)

or

Remark 1: It may be observed that (5) is a generalisation of a similar result of Kapur⁵ concerning the generalised Shannon entropy, viz.

$$H_1\left(\frac{p_1}{w(P)}, \frac{p_2}{w(P)}, \dots, \frac{p_N}{w(P)}\right) = H_1(p_1, p_2, \dots, p_N) - H_1(\Sigma p_i)$$
(6)

Remark 2: In case P is a continuous distribution the above equations (1) through (5) may be modified by changing p_i to the density function p(x) and summation to integration with respect to x. In this case the modified form of (5) will give a generalisation of the continuous analogue of Kapur's result,

Examples

Uniform Distribution : Here we have

$$p_i = rac{1}{N} \forall i = 1, 2, \dots, N.$$

Hence it can be seen that

$$M_{a}, \beta (P^{(r)}; u) = M_{a}, \beta (P; u) = N^{u}$$

which is independent of α and β . So in this case the entropy $H_{\alpha}^{\beta}(P)$ is independent of α and β . Also the *r*-power distribution $P^{(r)}$ will be the same as *P* for all *r*.

Geometric Distribution ; Here

$$p_{i} = qp^{i}, p + q = 1, i = 0, 1, 2, ...,$$

$$M_{a,\beta} (P; u) = \left(\frac{q^{a-1} (1-p^{\beta})}{1-p^{a+\beta-1}}\right)^{u/(1-a)}$$

$$M_{a,\beta} (P^{(r)}; u) = \left(\frac{\dot{q}^{r}}{1-p^{r}}\right)^{u} \left(\frac{q^{r} (a-1) (1-p^{r\beta})}{1-p^{r} (a+\beta-1)}\right)^{u/(1-a)}$$

Exponential Distribution : Here

$$p(x) = \lambda e^{-\lambda x} , \lambda > 0, x \in [0, \infty]$$
$$M_{a,\beta}(P; u) = \left(\frac{\lambda_{a}^{\alpha-1}\beta}{\alpha+\beta-1}\right)^{u/(1-\alpha)}$$
$$M_{a,\beta}(P^{(r)}; u) = \left(\frac{(\lambda r)^{a-1}\beta}{\alpha+\beta-1}\right)^{u/(1-\alpha)}$$

We now proceed to consider the particular simpler cases of the above.

GENERATING FUNCTIONS FOR RENYI'S ENTROPY (a) For an incomplete distribution, setting $\beta = 1$ in (1), (4), (5), we have

$$M_{\alpha} (P; u) = M_{\alpha, 1} (P; u) = \left(\frac{\Sigma p_i^{\alpha}}{\Sigma p_i}\right)^{u/(1-\alpha)}$$

$$\tag{7}$$

$$M_{\alpha,1}(P^{(r)};u) = (\Sigma p_i^{r})^u M_{\alpha,1}(P^r;u)$$
(8)

$$H_{a}(P^{(r)}) = H_{a}(P^{r}) - H_{a}(\Sigma p_{i}^{r})$$
(9)

(b) In case P is a complete distribution, (7) becomes

$$M_{a}(P; u) = (\Sigma p_i^{a})^{u/(1-a)}, \qquad (10)$$

which is the generating function given by Sharma².

Using (10), (8) and (9) can be written

$$M_{\alpha}(P^{(r)}; u) = \frac{[M_{\alpha, r}(P; u)]^{(1-ar)/(1-a)}}{[M_{r}(P; u)]^{a}(1-r)/(1-a)}$$
(11)

$$H_{a}(P^{(r)}) = \frac{1-\alpha_{r}}{1-\alpha}H_{ar}(P) - \frac{\alpha(1-r)}{1-\alpha}H_{r}(P) \qquad (12)$$

GENERATING FUNCTIONS FOR SHANNON'S ENTROPY

Incomplete Distribution

Letting $\alpha \rightarrow 1$ in (7), (8) and (9), we have

$$M(P; u) = \lim_{\alpha \to 1} M_{\alpha}(P; u) = \exp\left[-u \frac{\Sigma p_i \log p_i}{\Sigma p_i}\right]$$
(13)

$$M(P^{(r)}; u) = (\Sigma p_i^{r})^u M(P^r; u)$$
(14)

$$H(P^{(r)}) = H(P^{r}) - H(\Sigma p_{i}^{r})$$
(15)

Complete Distribution

Equations (13) to (15) can be specialised for the case when P is is a complete distribution as before. However in this case the generating function given by Golomb¹, viz.

$$T(u) = \Sigma p_i^u \tag{16}$$

is much simpler, from which

$$-\frac{d}{du} T(u) \Big|_{u=1} = -\Sigma p_i \log p_i = H(P) , \qquad (17)$$

where H(P) is Shannon's entropy. From (16) and (17) we have the generating function and entropy for the *r*-power distribution $P^{(r)}$ as

$$T_{r}(u) = \frac{T(ru)}{[T(r)]^{u}}$$
(18)

$$H(P^{(r)}) = \log T(r) - r \frac{a}{dr} \log T(r)$$
(19)

Examples

We will now give the generating function discussed under Complete Distribution and the entropy for the *r*-power distributions corresponding to some standard distributions.

Gamma Distribution : Here we have

$$p(x) = \frac{\lambda^{k}}{\Gamma(k)} e^{-\lambda x} x^{k-1}, \lambda > 0, x \in [0, \infty]$$
$$T(u) = \frac{\lambda^{u-1} u^{u-uk-1} \Gamma(uk-u+1)}{\Gamma(k) u^{u}}$$

Hence

$$H(P) = -\frac{d}{du} T(u) \Big|_{u=1} = k - \log \lambda + \log \Gamma(k) - (k-1) \Psi(k)$$

where the function $\Psi(k)$ is defined by Erdélyi⁹

$$\Psi(k) = \lim_{n \to \infty} \left[\log n - \frac{1}{k} - \frac{1}{k+1} - \frac{1}{k+2} - \dots - \frac{1}{k+n} \right]$$
$$T_r(u) = \frac{u^{ur - urk - 1}}{\left[\Gamma (rk - r + 1) \right]^u}$$

KASHYAP & MATHUE : Information Generating Function

$$H\left(P^{(r)}\right) = -\frac{d}{du}T_{r}\left(u\right)\Big|_{u=1} = \log\left[\frac{\lambda^{r-1} r^{r-rk-1} \Gamma\left(rk-r+1\right)}{\left[\Gamma\left(k\right)\right]^{r}}\right]$$
$$-r\left(\log\lambda + (1-k)\log r + \frac{r-rk-1}{r} - \log\Gamma\left(k\right)\right) + r\left(k-1\right)\Psi\left(rk-r+1\right)$$

Exponential Distribution: For k = 1, Gamma distribution reduces to exponential distribution; therefore the corresponding T(u), T, (u) and entropies can be obtained from Gamma distribution as a particular case.

Normal Distribution : Here

$$p(x) = rac{1}{\sigma\sqrt{2\pi}} e^{-x^2/2^{-2}}, \ \sigma > 0, \ x \in (-\infty, \infty)$$
 $T(u) = u^{-1/2} \left(2\pi\sigma^2 \right)^{(1-u)/2}$
 $T_r(u) = u^{-1/2} \left(\frac{2\pi\sigma^2}{r} \right)^{(1-u)/2}$

$$H(P^{(r)}) = -\frac{d}{du}T_r(u) \Big|_{u=1} = 1/2 = 1/2 \log r + 1/2 \log (2\pi\sigma^2)$$

From a comparison of T(u) and $T_r(u)$ obtained above we observe :

Remark 1: The r-power distribution corresponding to the Gamma distribution is another Gamma distribution with the parameters k and λ replaced by kr - r + 1 and λr respectively. Considering the case k = 1, we see that the r-power distribution of the exponential distribution is exponential with λ replaced by λr .

Remark 2: The r-power distribution corresponding to the normal distribution with variance σ^2 is a normal distribution with variance σ^2/r .

ACKNOWLEDGEMENT

Thanks are due to Dr. B. N. Singh, Director, Defence Laboratory, Jodhpur for kindly permitting one of the authors to publish this paper.

REFERENCES

1. GOLOMB, S. W., IEEE Trans. Inf. Theory, IT-12 (1966), 75.

2. SHARMA, B. D., On Generating Function of Rényi's Entropy, Internat. Conf. Operational Research in Universities, Delhi (1967).

3, SHANNON, C. E., Bell Syst. Tech. J., 27 (1948), 379,

- 4. RENTI, A., 4th Berbeley Symp. Prob. Stat., 1 (1961), 547.
- MATHOR, K. C. & KASEYAP, B. R. K., A Generalised Information Generating Function, (communicated for publication), 1969.
- 6. KAPUR, J. N., Math. Seminar (Delhi), 4 (1987).

182

- KASETTAP, B. R. K., Some Results on Entropy in Information Theory, Cabiers in Centre Exceeded de Recherche Oprationnelle (Bruxolles), 12 (1970).
- KAPUR, J. N., Presidential address, Section of Maths. The fifty-fifth session of the Indian Science Congress, Varanasi, 1968.
- 9. ERDELYI, A., "Higher Transcendental Functions", Vol. I (McGraw Hill), 1953.