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Following the method developed by Bhatnagar & Prasad, based on the investigations of Kulikov-
skii & Slobodkina, we study the stability of self- similar flows generated by the propagation
of shock-wave in aninhomogeneous medium with density varying either exponentially or as a power
of distance. Also we consider the shocks produced by 1mpulswe load. We find that all these
flows are stable in the neighbourhood of critical point, which is a saddle point of the system of
differential equations governing the flow in its neighbourhood.

The stability of the self-similar flows of the second kind as defined by Zeldovich &
Ralzer’- in the neighbourhood of a critical point by reducing the system of equations to a
quas1—hnear equation has been investigated. Bhatnagar & Prasad® who have shown
that the investigations of Kulikovskii and Slobodkina? for the propagations of disturbances
in a steady flow can be extended to self-similar flows, have been followed. It has been
shown that a self-similar flow of second kind due to imploding shock-wave in the neigh-
bourhood of a eritical point is stable with respect to radially symmetric disturbances.
Applying this method to the problem of the flow.into a cavity, discussed by Hunter?, it
has been shown® that the flow is unstable, when the boundary of the cavity is acceleratmg
It is found that the critical point is a node?,

The expressions for the discussion of stability, for a very general unsteady one-dimen-.
sional flow with variable density have been obtained. As a particular case, for spherically
symmetric flow with constant initial density, the result of Bhatnagar & Prasad? are ob-
tained. For spherically symmetric isentropic flow with constant initial density, results of
Prasad & Tagare’ are obtained. ,

Next the stability of the self-similar flow behind a shock-wave propagating towards
the edge of a gas is discussed. This problem was first studied by Sakurai® and has been
given as one of the examples of self-similar flows of second kind by Zeldovich and Raizer®.
Further the stability of the self-similar flow due to propagation of a shock-wave due to an
impulsive load, a problem discussed in Zeldovich & Raizer! have been considered. Next
the stability of the self-similar flow due to propagation of a shockwave in an exponential
medium, a problem considered by Hayes” and discussed in Zeldovich & Raizer* has been
considered.

FORMULATION' OF THE PROBLEM AND BASIC EQUATIONS

The equations of one dimensional unsteady motion of a polytropic gas are
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and

P

v=1, 2 and 3 oorrespoqd respeetwely to plane ﬂow, cyhndncally symmetrlc flow and
sphencally symmetmc flow.

In terms of thenew dependent variables @, V and Z and new independent variables
n and 7 defined by ,
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Where pﬂ(t) = p"‘R‘” andR(t) =4 |t | 3 are functions of time and p w » 4 and 3 are
constants, the eqns. (1) to (3) reduce to . L o C
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The eharaetenstws of the eqns (6) to (8) in (1, » »r)~plane are S
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" "Let the suffix zero represent the values of the ﬁow Var ables in a se]f similar' flow, so
that Gy, Vo ; anid Z, ‘are functions of 7 only, and satisfy the system of ordmary differen-

tial equations
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TAGABD : Stablhty of Self-Similar Flows 1m

In order that the solution of the eqns. (10) to (12) satisfy the correct boundary condi-
tions in a self-similar flow of second kind, it is necessary that the integral curve in
(Zy  Vo)-plane must pass. through the singular point (Zo*, 'V, *) determmed by the
equations
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For planar motion with »=1, eqns. (13) and (14) determine a unique smgular point
(Zo* V *), The condition that the. integral curve. passes through this su;lgu]ar point
(Zy* ) determines the value of the similarity, exponent 8. In the case of non-planar
motlon v -ﬁ 1 it is found in all cases we have considered that only the larger root V,* of
eqn. (13) corresponds to physically realisable flows. - Consequently, the similarity exponent

is determined through that integral ourve which passes through the smgular pomt corres-
ponding to this larger root.

The characteristic velocity
Co = (Vo —98) + vVZ,
which vanishes at (Vo* , Zy*) satisfies o
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We can also show, that at the point (¥ * Zo*)
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In the neighbourhood of the singular point (Vo*, Z,*) we have, '
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where 7* is the value of when Vo = Vo*. Therefore, it follows from (15) that
( 40, )"is given by o
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Following Kulikovskii & Slobodkina®, the propagation of the self-similar flow and the
self-similar ﬂow in the neighbourhood of the critical point are governed by
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STABILITY OF SELF- SIMILAB FLOW. DUE TO PROPAGATIO‘\T OF
: 8S8HOCK- WA'VE TOWARDS THE EDGE OF THE GAS

l

Congider the stability of a plane_flow with » = 1, when a shock-wave propagabas
through a non-uniform medium of decreasing density (w # 0) and reaghes the. })exmdary
where the density vanishes. This problem was first discussed by Sakursif, Then
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The same values of the paraﬁmters @, 8 and ¥ are ta.ken as given by Zeldovwh &

Raizer!, We then tabulate « and B (See Tab]es 1to3). : -
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- ‘ ) Ticanz : Stability of Self-Similar
' TABLE 3
" For y = 6/5
w 8 a B
2 0+752 1380 . 0-1096
1 . 0858 —1-210° 020865
- 05 0'920 —1‘110 0-3850

From Tables 1 to 3 it can be seen that for all these cases, o << Oand 8> 0 and
hence the singular point is a saddle point.

In this problem the time is measured when the shock reaches the edge. of the ga,s 80
that = = In (—i), R (f) = 4 (—¢)3 and ¢ increases from — 00 t0 0. 7 = In | ¢ | decreases
from - 0o to — co as £ increases from — oo to 0. Hence as ¢ increases r decreases. But ¢ << 0.
Hence as ¢ increases ar also increases and hence the area of the perturbation § = Syeo* in
(C,m)-plane increases. Following Kulikovskii & Slobodkina? it is.concluded that only one
of the four steady flows passing through the saddle point is stable. Here actual flow is
represented by ! of in Fig. 1 and is stable in the neighbourhood of the singular pomt

STABILITY OF SELF-SIMILAR FLOW OF A GAS UNDER TI:IE
ACTION OF AN IMPULSIVE LOAD

The stablhty of self-similar flow of a gas under the action of an impulsive load have been
discussed. * When the gas-surface is subjected toan impulsive load by methods described in

a
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Zeldovmh & RmZer’ the motion is self~31m11ar motion of second kmd In this case plane -
wave (v = 1) propagates in a gas of uniform density (w = 0). The time is measured from
the instant the impulsive load is applied and the self-similar, motion is realised for
t >0

Thus
RO=4@)%r=In() . (25)
By puttingy = 1, @ =0in equations (13), (19) and (20), we get ‘
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In Table 4 the valuesof o , 8 for values of & and ¥ as given in Zeldovich & Raizer' are
given,

It will be seen from Table 4 that the singular pomt is a saddle point.

Here ¢ increases from 0 to +- 0o and hence r = In (¢) also i increases from — o to 4 oo
Thus as ¢ increases = also increases and ar decreases. Thus all the four possible: flows
near the singular point are stable. Here the actual flow is represented by aob in Flg 1 andis.
stable.

g s

STABILITY OF SELF-SIMILAR FL W DUE TO PROPAGATION
OF SHOCK-WAVE IN AN EXPONENTIAL MEDIUM

Let a strong shock propagate in a medium in which the density varies exponentially
with initial densitv, producing a self-similar motion of second kind.  Such models have been
used for atmospheres of stars as well as of earth by many. \

The gas is assumed to be polytropie with polytropic exponent 7. The gas is initially at

1est at zero temperature and zero pressure under no body force, with a density distribution
'given by

p= P*e'/A ‘ . (29)
€
TasLE 4
Y 8 a 8
11 0-560 —0-3535 00577
1.4 0-600 .—0-4000 0-1715
1.6667 0-611 —0-4165 0-1512

28 0627 —0-4405 0-2120
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Here p* is the density at surface and A\ is the characteristic length for the “density
variation, Following Hayes” , we suppose that the density increases as r increases down-
wards the surface.

Let a plane shock-wave be located at r= R(t), and the motion of the shock is agsumed
to follow the law -

R =5Alﬁ |t | =38Ar (say) (30)
where 3 is the similarity parameter, The velocity of the shock is then given by
R=sprt (31)
The similarity variable £ is defined by '
‘ ,_(—R 29
£ = A (32)

When the shock front is propagating towards the surface, the similarity parameter ¢
is negative behind the shock and the time ¢ is positive and tends to 4 co. The situation is
reversed when the shock is propagating outwards from the surface,

In order to study the stability of this flow behind the shock the following non-dlmen-
sional variables have been introduced :

pr,t). u(r,t)
7 (€, 7) = BNt ] 2 sV (E,7) = SAT

and ‘ . -

_p(r,h)
g€ 7= e

Separate analysis is needed according as whether shock is propagating into thinner

(33)

atmosphere or into denser atmosphere.

Case I : Let the shock traverse into thinner atmosphere The characteristic speed C
in (¢, r) - plane which vanishes at the singular point satisfies an equatlon similar to
equation (21) and is given by

eC o0 4 + 3 —2)
a Tl = w
‘where £* is the value of § when Vy = V*.

(6 — &%) (34)

r+8—2)

The coefficient o is identically equal to zéro and the coefficient 8 = 57

‘since! ¥ >1and § > 1.  Hence the singular point is a saddle point and the area of

perturbation S = Sgeot in (C , §) - plane is always a constant for all values of r.
Here + decreases from oo to 0 as ¢ increases from 0 to 0o, The actual flow in this case is
lof in Fig. 1 and is stable. :

Case 2 : 'When motion of a shock front is in the direction of i mcreasmg density,

+o remains zeroand B> 0 since! ¥>1 and 8> 1. The smgular point is a saddle
point. The area of perturbation is constant for all values of ». Here 7 increases from — oo™
to + oo, ast increase from 0 to 4 . Actual flow in this case is aob in Fig. 1 and is stable.
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