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Inter-orbital optimum trajectories with specified transfer a.ngle in an inverse square gra.vam-
tional field have been, analysed. Criterion of optimization adopted is minimum velocity increment ,
in the entire transfer operation with one impulse each at the initial and final terminal, Particular
cases of the above problem are discussed and as a numerical illustration, results are obtained for
transfer trajectories between two orbits in Earth’s gra,vlta,tmnal field.

—

Srivastava & Singh' have studied optlmum transfer tra]ectory between any two,
terminals constrained by a-specified transfer angle in an inverse square gravxtatmnal
field, the initial terminal being a point on an elliptic orbit and final terminal a point on
another elliptic orbit. The optimum trajectory defined there! was one which minimizes
the single velocity increment applied to the rocket at the initial terminal. In the present
paper optimum inter-orbital trajectory with specified transfer angle is analysed under a
different optimization criterion which is defined as that which minimizes the total charac-
teristic velocity required in the entire two impulsive transfer operation. Two particular
cases of the above problem are : (i) when the mission is to achieve inter-orbital transfer
with least velocity increment at the initial terminal which is the problem studied earlier?,
(i) when the mission-is to minimize the velocity increment applied at the final terminal
for rocket’s entry into the final orbit. Case (ii) has been discussed in some detail. Numeri-
cal results are also obtained for orbits in Earth’s grav1tab10nal ﬁeld *

FUNDAMENTAL LQUATIONB AND CHARACTERISTIC VELOCITY
Let the equations of the elliptic orbits corresponding to initial and final terminals be

| I,y =17 (1 4 e cos 6) o 4 (1)
. Iy = r[1 4 e cos (0 — a) ] : o 2y
where suffixes (1) and (2) relate to initial and final terminals, | is semi-latus rectum, e is
eccentricity, (r , 0) are polar co-ordinates with force centre (focus) as the pole and the

line joining the force centre to the peri-apsis of the initial orbit as the initial line and « is
the angle between the major axes of the initial and final orbits. S

If (ry , 6,) and (r3 , 6; + ¢) be the mltlal and final terminals, equatlons (1) and
(2) give

”1__li(1+eacos(91+-¢_“) )-‘ (:«3),
ra b\ 14 cos

where ¢ is the specified transfer angle. The velocity change AV, réquired at the initial
terminal in directing the rocket along the transfer trajectory will be given by -

A71 = [V + Vi — 2V,V, cos (¥ — ¥;) } ) 4)

where V,, V; are rocket velocities just before-and after the application of impulsé and
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Yo » 71 are the correspondmg headmg angles. We can show that
e; sin 6, .
1 4 e cos @ ) )

- tan ¥y =
Ve = ‘%[ 14e?+ 291‘(’0é b, 1 ‘ (6)

where p is gravxtatlonal parameter.

If V, is the rocket velocity along the transfer trajectory just before the application -
of the impulse at the final terminal, ¥; is the orbital velocity to be obtained for entry in the
~final orbit and ¥, , ¥; the corresponding headmg angles, the required veloclty change

AV, will be given by the relation,

-

: AVa=1[V? +Vf2—2V2 I/'fcos(yz—)’f)]ir o )
It can be shown that ' : -
RS g __ €& sin (6, + ¢ — o)

Vi = T‘:‘[l“f" 2‘321‘305(91’4“?5“‘1)‘1'952}* 9)
sn& . : ! ‘ X 7’ ; |
. ) . 1 1y .
vE=verm (o) (10)
. N : Ty 71
By i;on@ervation of angular momentum we have '
Vip cos ¥y ,
COSYy =" 5 IPV2 . (11)
Further; V1 can be éxpressed in terms of ¥, and ¢ as! . .
R 2 _ “ (]. — COS ¢) °ec2 Yl : -_71— :
W= S Sin $ tan ¥, — cos ) l"llé 2 (12)

Substituting from equations (10) and (11) into equation (7) we have’

1 1 ‘ o :
AV, = ['712+2P (T""T) + V3 —2¥; 1V12+2P (i__l_)}i
2 1 ; c

s "

[ . Vi p cos 7y ~P 3
. T ‘ 1 LN 13)—% ¢ : 13
GOSJL 00_3 X i V12 42 (T — —)} ‘ f } . ( )

2 7y J

~

characteristic velocity is then given by 7-
| AV = | AV ]+ | AP | e
:where AV, and AV, are given by equations (4) and (13). Evidently AV is a function of
two variables #, and 7,. :

OPTIMIZATION ANALYSIS

Thie problem now is to find out values of 6, and .Yl which minimize AV. For this
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we have ) :
. ;L—"i%%}”—‘-=ol o (15)
| iU -
From ~équation‘s (15) and (16) we have‘ | | |
L—eos (n — 70)%%}]+AV [5+Vf V —cos { ( &V + ;’——a‘};f) -
_V[sinl[’{ i—(leﬂcosyl)z } { Vicos » (Ti- -—,%‘1-— 7‘:# -%’;)
Fpoosy, 22) —lewcos v, }+ L g;;]], 0 L m
and ‘ ) |
7 e 52 L7, % ]
+ AIVQ[V, Vs (1 =¥ cos ;)—V,smc{ 1— (Fypmoos vy 2 ¥
{p (cos)’lj izl -\——Vl sin 71),-— V.2p cos ,,m | ,:;7: } ] =0 ' (1s)~f,~\
where o )

A ( _*1_ o7 1 r/r,,)
¢ =Vi 5 t# 0, A 26
r 1 1 —

— ——— e 2 — e —
= Vz_(LVI_F'ZP' ("z ’1)}

-1
{ = cos (Vipy cos?) — v

ﬂ ‘e, 1, sin 6,

3%, T (1}-e, cos 0%

ar el sin(b +4—a)

3, 1l4ecos(B fd—a)
¥, pe, sin 6,

a6, Vol

Py e (egtcosf)

8% 1 2¢ 0086 4 ¢
aVy peysin (6 + ¢ —«)
80, Vil
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2 efegtcoi(f -4 —a)}

30, 1+ 2epc03 (6 ¢ —oa) + € ‘
¥y _ p(l—cosgd) (14 e cos by [ sec? ¥, (24 tan ¥, — sin ¢ sec? ;) ]
™ 2V, L A3 _
3V,  p(1—-cos¢)secty [ll (€, €351 (d — ) &y 8in (6, -+ ¢ — )—ey sin 6)

e, Vi 14 (1 -+ ¢ cos 6y)
ey sin 6, ]
i

e

(1 + €008 (8 + ¢ —a)
I, 1 4 e; cos 6,

and A = ) + sin ¢ tan y; — cos ¢
Equabxons (17) and - (18) are two transcendental equations in two unknown 6, and y,
which can be numerically solved for given values of orbital parameters and 4, Havmg
known' 6, and y, , location of initial and final terminals can be obtained from equations
(1) and (2) and then optimum values of ¥, , ¥, and 7, can be evaluated -frém equations
(12), (10) and (11) respectively. v, V,, ysand V; can be found out from /equiations (5),
(6), (8) and (9) and hence (AV) m;n can be calculated from equation (14).

: PARTICULAB CASES

Two partlcular cases of the above problem are (i) when the mission is mter-orbltal
transfer under specified transfer angle constraint with least velocity inerement at the initial
terminal (ii) when the mission is inter-orbital transfer under specified transfer angle con-
straint with least velocity increment at the final terminal. In case (i) characteristic velo-+ .
city will be given by | A ¥, | and equations (17) & (18) are reduced to those obtained by ™
Srivastava & Singh!, In case (i) characteristic velocity is given by | AV,|and hence

eyt

.TasLe 1 o

PARAMETERS OF OPTIMUM TEANSFER TRAJECTORIES

Mission Launch Launch  Launch  Arrival Launch  Arrival = Arrival Velocity
heading vectorial = radius radius  velocity  velocity heading change
angle angle vector vector . angle -
”1 6, 1 s Vs ‘ Vs Ya
(km) (km) km/sec km/sec -~ kmfses .
. . R . * »
General 54+05° 123-5° 11985 28555 6-7937  2-4466  47-72° . 5-6618
Case ' : SO
Case (i) 49.20° 111-0° 11204 26147 7-4203  3-7909  56-76° | AVy| min
, = 3-9280
Case (ii) 58:70° 153-5° 13670 32895  6-0178  1-4534  26-62° [ AV, | min
. ‘ . C o= 14464

*AV)min=(| AV;| 4+ | AVy] ) min=(4-0519 + 1:6009) = 5'6618

-
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equations (17) and (18) give

om0 ont (w3 ) et [{ 1= et
{ (Vlcos"l (}}; ’2—2“‘ ;p; ‘%%),*chosyl%) ;—lefnzébs}; } .

o il w
an‘;i V. 3;;1 ( 1— n“yf Cos ;) — Vysin [ { 1 — (Vyomcos v, }-&

‘ av . av '
{p (Gos 7 ay: —V, sin 73 ) — Vi2p cos yyn? 87: } ] =0 (20)
Equations (19) and (20) can be solved for the unknowns 6, and , for given values of
orbital parameters and ¢ and proceeding as explained in general case we can evaluate the
optimum valuesof V;, Vy, 71, va» and | AVa | min -

NUMERICAL EXAMPLE

Parameters of the optimum transfer tré,jectories for the general and particular cases
have been numerically obtained and are given in Table 1 for the following two orbits in
RBarth’s gravitational field. ' : . \ ‘ ’

Initial Orbit : I, = 10* km, ¢; = 0°3

Final Orbit : I = (2 X 10%) km, e, =04, 0 =20° '
NS

Specified transfer angle ¢ = 35° \

As should be expected, Table 1 indicates that the velocity changes at the initial and final
terminals in the general case are respectively greater than the velocity change at the initia

- terminal in case (i) and velocity change at the final terminal in case (ii). Fig. 1 and 2
show respectively the variation of AV and | AV, | with respect to 8, for typical values of
vs. Their study shows that (AV) mis and | AVy| min do occur” at 6, = 123-5°,
y, = 54-05° and 6, = 153-5° y; = 58-7° respectively.

30 €0 %0 120 |9°.. “mlul;o 40 37C ¢ WX L3 ! .3 “w .G:ml““;' 20 240 270 ’\m 3% M0
Fig, L--Variation of AV with respect to vectorial Fig. 2—Variation of (A V,) with respect tp

angle. veotorial angle.






