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 The boundary layer equations for the unsteady fluid flow with constant suction velocity have been
wogked out for the impulsive motion of a circular cylinder in the form V (¢) = 4 exp (Ct) where
4 and C are certain constants, The stream function has been expanded in terms of some functions
%o(s) and »,(s) where s is a function of y coordinate. The phase angles for various terms have been
caloulated, and variations shown graphically forlarge and small frequency of gscillations, where
the oscillatory motion is obtained on replacing € by iw.

The problem of the boundary, layer growth on a circular cylinder which starts its
motion from the rest by an imipulsive force was taken up by Blasius®' who also considered.
time of separation for the second approximation. Goldstein & Rosenhead? calculated the
time of separation for the above cited problem upto third approximation. Later on Watson?
considered the boundary layer growth for the unsteady two dimensional flow and solutioas
for purpose of similarity were also discussed. Lal* extended the application of asymptotic
boundary layer theory of Watson to the flow past a porous sphere. Nanda® considered the
boundary layer growth with constant suction when the velocity of the cylinder varies with
time, ¢, in the following two ways : ’ -

i) V(@) = 4
(i) V (&) = 4 exp{Ct), C > 0

N\

He calculated the velocitjcompdhehts u, and @ and the time of separation. Earlier Lal®
has considered, the growth of boundary layer when the velocity of suction is constant and
the velocity of eylinder is of the form V (f) = 4 exp (Ct), but the motion is oscillatory.

In the present study, some of important results for the phase angle have been given.
This is important for the caleylations of the components of velocity inside the boundary
layer. From exponential flow, the results for the oscillatory motions have been deduced
and some variations are presented graphically. :

‘BASICC EQUATIONS

The boundary layer equations in two dimensions are : _
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The equation of continuity is
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If Uz, t) is the free stream veloclty, we have for the pressure term
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The boundary conditions are ' SR o ,
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where g 13 constant non- 7610 neganve suction V‘elocrsy
APPLICATIONS TO CIRCULAR CYLINDER

Let the fluid be at rest when the tlme, t=0and the cylinder be set into motwn w1th
veloclty ,

N - V(t)-—Aexp(C’t) B ‘(6)‘

The veiomty components, wand v are given by ‘ : CLoen .
o mmg =g U
a,nd'zp,thestreamfunetiénisgivenby Lo : L - o
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» As usual substltutmg above equatmn mm (1) and equatmg the coeﬂicmnts of various
’ poWer of 8. we get -

xo" + Kxo’ ——‘%a +Tﬁ0 ,
"'+Kx1 ——2x1 — X '+'Xo7€o +‘1'=='07

e Bl 8 0 0 a0 (10)
+Kx¢_.2'-——3xza—xo xi' +X1Xo =0 | ,
where Ve | (11)
The reduced boundary conditiens. are ‘ Pl el
8=0:x =X —‘Xl"‘xh” =0 | :
g=w: g =Lx =X -?«=0 } o
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Above equations are simple and their solutions for \t‘he‘pm%é.nt purposeare - -

@) =5+ %[e@(—hs)’—;—I] oy

Y (8) = -li;_nﬁ’_f:[ih_:exp () — s exp () 4@1‘;’{ ~‘Qki)'(fhs)-é—'l}] (1‘4.)  o
e t(revETE) l o
and ST | 15) .
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DISCUSSIONS

Lal® has considered.two cases when K is small or large. From these results the cases for |
small and large frequency of oscillations have also-been considered with the help of above
equations and replacing C by ie where o is the frequency of the oscillations of the cylinder.

For small values of K, we know® that ~
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and for large values of K,

. ‘Xo=0'532(K+’—[1§—;_ %3—) | e (18)
¥y (5) = 82 (T('{_?{T—ﬂf{?) / (19),‘.

OSCILLATORY FLOW

‘ - S
' To get an ascillatory motion, C has to be replaced by tw in-the above equations. From
equation (11) we observe that if (' is small, then K is large and similarly for large values of

(' we have small values of K. At the same time, C' and « are increasing or decreasing to-
gether. For small and large values of i, expressions for xo(s) and Xi(s) were deduced by

~ Lal® and. in the. present note, these-have been utilized-for.the graphical representations.

.- From such calculations, the phase angles have been. calculated which is necessary t‘{)ﬁnd out
if the oscillatory motion lags behind or leads the superimposed motion on the cylinder. In

"~ Tables 1 and 2, the amplitude of the factor which multiplies the oscillatory compoment has
‘been calculated. Such caleiilations are important for determining the;velocity components -
inside the boundary layer, L ‘ '
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{&1n this c;mse,m we have (ref, 6; eqnatiéi;s;SO? 31) | | |
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I have already shown6 ﬁhe vamatmn of angle o with @ and thus here othet vriations have.
been shown Whose use is required for further development of the boundary layer theory.

iI?ll}imtlon (21) may be written as

xl(s>~y 131 {60813+@ smﬁ} - (24)
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Where ‘ : Poiies . babi / T R OF N S EETI PR e SR j e
|Bil=VBFEBA. | g
: —1 -} 32 V32 } 62 —5 32 72 ‘
"By = = 1 {49 vy v @ F ’13’00'1 v o 10680 » « } i
. '_1 —3 327 3 4 .52 —5 ~3/2 I (25)
T B =149 v o —27139%. v o 410657, Voo
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= tan = ‘ N '
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In Table 1, we have calculated the'values of | B, | with the- help of By,'and By; when
v =0+01and v, = 0-1or 1-0. We find from Table 1that as « increases, the magnitude

‘of B, also increases. For small. values of the suction veloclty, the magnitude of B, is found
to be large.

From Fig. 1, we see that as the suction Veloclty increases, the phase angle § is found to
be increasing for given frequency of oscillations. The phase angle, 1s found to be decreasing
as the frequency of oscillations increases. From the calculations, we have B as negative
angle which means that the fluctuations are laging behind the oscillations of the cylinder,

Case I1 : - For large & i.e. small volues of K ‘ \ o
In this case from ref. 6, equations 28 and 20, wehave = - '
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Fig. l—»Varmmon of g.ngle —B thh wfor ,.

v—-O 01 and v==0-1 or 1 N
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WFrom above equatlons (26) and (27), we easﬂy see that the above two eqﬁatxons ma be

- (28)

(29)

(30)
{\ - o P3/i) 3/2 1 ': :
: + o 11857 v w el
—1.p..
tan ot
¢ D,
and ', . o5 E
2 e .
xus) sgeinfby aty [osttisnt || B (31)
TABLE 2 i
Varurion 1v | 0, | AND | E, | as « TNOREASES FOR vy == 01 %D » = 0-01
w 16 . 25, 36 49 64 /81 100
(o] _ 168 227 - 200 . 380 .40 50 690
A T 1070 1690 2455 3860 4410 5605 6925
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Fig. 2—Variation of -y with w.
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Fic, 3— Variatiom of angle —& with » when
) c1== 0:01 and v, = 0:1,

In Table 2, the variation of | C; [ and’
‘| By | has been shown, for vy = 0.1, and -
v = 0-0L. The values of | D; [ are found to
be increasing by increasing the frequency of -

- oscillations. But the values of | D, | become

very large and hence' the calculations for

ID; | have been avoided.. From Table 2, we
see that as w increases, the amplitudes of C;
and E, increases rapidly. As thenumerals are
large they have been given in round numbers.

In Fig. 2, the variation of angle -I- y with

‘whasbeen shown. It has been found that the

value of y is positive for the various values of
w. { Hénce the fluctuation leads by an angle -
y. The value of y increases as the frequency
of oscillations increases,
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From Fig. 3, we see that for w between 25 afd 81, the variations are slow. As ¢ increases™
beyond 81, angle ¢ decreases fast, We easily see that & decreases as ¢ increases. '

From : Flg 4, we see that as w increases, the phase angle also increases. For > 64
the mcrement is slow..

From equatlons (7) and (8) , we have the exoresswn £0r % inside the boundary layer as
au
u = exp (0 U@)[xo@)%-s AN T TR

which for yhe oscillatory motion when the frequency of oscillations is small, becomes

(wi+n) P@uits) ] o
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where . . o |
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—3
“N; =6y, v ' oy
—1 X . —1 N.
8

n:Mn--E,8=tan W, )

and 4 = 1, for convenience of calculations.

We see in this case that the cylinder is moving with velocity A4 cos wt, and the expres-
sion for u is obtained by taking the real parts in (34). The above-calculated values of
Xols) and y;(s) may directly be used and put into equation (34) for calculatmg u inside
the boundary layer. 1 ‘

- 'The present note is an extension of my previous paper° written' under the guidance of
late Prof. A. . Banerji with whom I worked during vacation under a U G.C. Scheme for

university teachers.
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