STRUCTURE OF THE CONTACT REGION AND ITS APPLICATION
TO THE REFLEXION OF A PLANE SHOCK WAVE FROM
A HEAT-CONDUCTING WALL

B.C. PaNpeY*

Indian Institute of Science, Bangalore
(Received 20 August 1969 ; Revised 23 January 1970)
A study of the structure of the contact region has been made taking into account the effects
of visoosity, heat conduction and radiative heat transfer. Analytical solutions for the temperature,
velocity and pressure distributions in a uniformly moving contact region have been obtained under
the optically thick-gas approximation when the thermal conductivity and absorption coefficients
are given by power laws. Applying thé analysis of the contact region to the situation when a plane
shock is reflected from a plane heat-conducting wallit has been shown that the reflected shock is
attenuated due to the combined effects of molecular heat conduction and radiative heat
conduction.

A contact region can occur in compressible fluid flow in different physical situations.
In ideal gas theory this is regarded as a discontinuous front across which density, tempe-
rature and entropy undergo jumps but the pressure is the same on both sides of the front
so that it moves with the fluid. But in fact it is, like a shock layer, a region of small thick-
ness where dissipative mechanisms are effective. Goldsworthy! studied the structure of the
contact region on the basis of the concepts associated with the Prandtl’s boundary layer
theory. He showed that the pressure across it remains constant approximately, Hall?
in his study of a uniformly moving contact region, experimentally verified that very little
pressure change occurs across it. ’

Goldsworthy! applied his analysis of the contact region to the situation when a
plane shock is reflected from a plane heat-conducting wall. He showed that the shock
is attenuated due to the presence of the contact region adjacent to the wall, in which the
effects of viscosity and heat conduction were considered. '

Sturtevant & Slachmuylders® have experimentally measured the position and the
velocity of the reflected shock and found that Goldsworthy’s approach to the problem of
shock reflexion from a heat-conducting wall is in a quite reasonably agreement with their
observations, Further they concluded that temperature jump effects at the interface
are not significant when the reflected shock is more than ten shock thicknesses distant
from the wall. Baganoff’s! measurements of the pressure rise at the wall are, as he states,
not conclusively in favour of Goldsworthy’s results, neither are they seriously at variance
with it. The cause of the uncertainties is attributed to the inherent difficulties of pressure
measurement on sub-microsecond scale. Clarke® has included the temperature jump
effects in his study of the problem using the technique of matched asymptotic expansions
and his results agree reasonably well with experimental observations. He concludes that
the temperature jump effects may account for some observations of reflected shock tra-
jectories which, according to Sturtevant & Slachmuylders® is attributed to. experimental
inaccuracies, ‘

Goldsworthy! considered the effects of viscosity and hieat conduction in his analysis
of the structure of the contact region. I, following him, has studied this problem
including radiative heat transfer under the optically thick-gas approximation. To
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illustrate the modified theory, which incorporates the general problem of an accelerating
contact region, I have obtained analytical solutions for the temperature, velocity and
pressure distributions in a uniformly moving contact region when the thermal conductivity
_and-absorption coefficients are given by power laws. - Under the caption “Structure of a
Uniformly Moving Contact Region”, T have obtained analytical solution to the problem
for any ratio T,/T, of temperatures. - A-series solution has been developed for the case
when the ratio (1',—17)/T 1s much léss than unity. It is found that the effect of radiative
heat transfer is, under the thick-gas approximation, similar to that of molecular heat
conduction as expected. Under the eaption “Normal Reflexior of a Shock from a Heat-
Conducting Wall”, Ihave applied the theory of the contact region to determine the flow
‘set up when a plane shock is reflected from a heat-conducting wall. T havefound that the
combined effects of radiative heat conduction and molecular heat conduction decrease the
strength of the reflected shock. » ‘
EQUATION GOVERNING THE FLOW
I have considered 2 uniform gas of infinite extent which is initially at rest and in the
region y < O it is heated at a rate depending only on the distance y from the fixed
plane y = 0 and the tinre ¢,  This situation involves a shock wave which is propagated
into the non-heated gas. The shock wave is followed by a.contact surface which
separates the heated gas from the non-heated gas. If viscous and heat conduction
effects are neglected, the motion and conditions at the two sides of the contact disconti-
nuity can be determined given the rate of generation of energy in the fluid. It is assumed
that this ‘ideal-gas’ solution is known: The one-dimensional gas-dynamic equations
including radiant heat transfer but disregarding the radiation energy and pressure are

: St =0 @
B e [ i
‘ p = RPT, a “)

where w is the fluid velocity, p the pressure, p the density, T' the temperature, F, the
radiative flux in the positive y direction, y the distance measuted from the fixed plane
y =0,y (t) the position at time ¢ of the particle initially at the origin, H (yo—y)
the Heaviside unit function which is zero for y > g, (t), @ (¥, t) the rate at which
energy is generated per unit mass of the fluid, p the coefficient of viscosity, &, the
coefficient of thermal conductivity, ¢, the specific heat at constant pressure and R the
gas constant. h : '

Since the contact surface moves with the fluid equations i(l) to (8) are rewritten
in the Lagrangian frame of reference for the sake of convenience

S y )
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‘where 2 is the initial position of a particle which is at posmon y at time t, p, the 1n1tlal
constant density of the gas and ¢ and ¢ are the new independent variables,

Writing equation (5) in the form
o , N SPU
5 . AP

and differentiating (8) with respect to ¢ keeping ¢ constant the Velomty © of a fluid par-
“ticle is found

. . - .!‘ : .’ i h . . .
. av Y 1 A '
v=wO+ [ 4 (5w, W
. » - - 0 N : ’
where 4 = ( —ﬁi—/—) " and u, (¢) is the yveloeitry at time ¢ of the particle initially

at the origin.

Writing the actua,l pressure and gas veloclty in the contact region in the form

_p=Ptp, u=Uiu, “ (10)
and substituting (10)- i (9) and {6), we obtam

:u—%@+fa,%~——)”L o ay,

o i ts], (L)

where P, w and U denote the ‘ideal- -gas’ solutions for the pressure, density and velocity.

We use suffices 1 and 2 to label quantltles in the heated and non-heated parts of the
gas ad]acent to the contact region resPectwely We assume that the thickness § of the

contact region is small and neglect ¢ (wlueh is’0 { ( — —al) 8 } ) and the vis-
. N4

w2
cous term in equation (7) following Goldsworthy?, Then the pressure in equation (7)
- can be replaced by the ideal gas. pressure P, (¢) evaluated at y = 0. He' also replace
Q (4, ¢) by @ ({) on the assumption that the rate of generation of heat in the fluid -
is not too strongly dependent upon the temperature. Now the equation (7) becomes

oT _ (r—1 . dP, T

at YPy dt B
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Under the optleally thmk-gas apprommatlon .
. 166TS T

\

o F = -: 3k, . oy - j (14)
whmh on using (5) ‘takes the. form L
: 160p1‘3 - eT ;
A -
where k. is the absorptlon coefﬁclent per unit volume and o the Stefan-Boltzmann
constant. . - R »
We solve (13) subject to the boundary GOIldlthIlS IT=Tat x/: =—00,T =T, at .

% = oo, where T; and T, are the temperatures of the gas on either side of the contacb
discentinuity and they, using the relation (15)," satisfy the equations

T, v—1) dPy .~ Q)
. & TR @ T o L
’ ify " (v —1) &P o ‘, N
& YR, di T =0. ’ an

. PuttlngT TIB (¢, t) or T = Tlﬁ £ Ty, the equatlon (13) usmg (16) and (17)
reduces to ‘

)

o e, 7
. = N~HPMU
Makmg use of (15) in (18) we. have Fe
2 71, |
17 W—th>}]
Ply, & ( ks ap ) 4 1667, 8 ( pT® 58 ) )
opRTy b \T oy 8Tgep -~ o \ kb Y-

Equation (19), in general, can be solved numerlcally once the-laws governing the
variations of k; and £, are prescribed. In what follows we have solved (19) analytically
when %, and %, are given by power laws. Once the temperature is known as a function of
Jrangd ¢, the pos1t1@n Y o‘f a particle is determlned from equation. (8) which can be written

- %n—( frw e (20)

| B R

By using equatlons (11), (12), (15), (—18) and (20) the expres&ons for the veloclty and pres-
sure are obtamed

1.4p % ol . 166ReI® - oT -
14 % U—-—»-—- 0 t'— g P .
r T Py Tdt »( )+ eyl o9 + “ 3Py ey

+f(), (21
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where P, is the Prandtl number, J@® and g(t) are arbltrary functions of tlme, Y is the
position ofa particle at time ¢ given by ‘ideal-gas’ flow theory and y the correspondmg
position of the particle when the effects of viscosity, heat conduction and radiative-heat
conduction are considered. The functions f(t) and g () are determined by cons1der1ng the
effect of the contact reglon on the external 1dea1 -gas flow. For a umformly movmg contact
surface which we have considered, dP“ = 0, ? T

dt

region. As such, in thls case, it follows from (21) and (22) that u > U and p - P
at both- edges of the contact reglon 1f f@) = 0 g (H=0.

- 0 at the edges of the contact

"STRUCTURE OF A UNIFORMLY MOVIN‘G CONTACT REGION

Since the contact region is assumed, to move with constant velocity, the ratio Ty/T,
of temperatures across it remains constant Iti is aSSumed that kg and k, vary according
to the power laws « ;

s I <

where ¢, and ¢, are constants By Wmaking use of (2’3),a,nd =19 eqﬁatioz_l (19)
reduces to . ,‘ ‘ .

Yo (B ey e
at ch 301)02' alﬁ . N < . ;
which in terms of the similarity variable defined by
' | Ca=gept o oo T L)
- where ‘ ' o
'15’(,c,1 160 o (26) .

B= 6B 3oy
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transforms to T i
. S wie d29 \n &0 R
T

\Equatlon (27 ) under the boundary condmons

—o0. (/277)k

T
admits the solution B | LT e
| 0-——%(1#2’—?%(1——5: erf(—’l . @)
| T L R 2 ,

Equations (21) and (22) on usmg (28)
- f(t)-—Oandg(t)—-O

gNe the ve1001ty and pressure dlstnbutmns in a umformly movmg contact reglon
respectwely . ;o

Semes Solutions - : C .
It is assumed that &, and £, vary according to pewer laws gwen by , N
kg =y T, by = PT2, ’ "‘29)

and in order to obtain analytical solution, the ratao of tempemtures across the confact
region has to be restricted.
It is assumed that S
T, —T,
St 1
_ T1 <<

By makmg use of (29) and T 1';0 + Tath,e equatmn (19) reduces to .
a0 Polc1 1607, ) ., 1607 20 \2 &2
& ( R T e, ) ol B, () +0_3s_b§]'; #0)

" The boundary OOIldlthlls are

L 8 (c0) = 0, e(—oo)—e, L | (®1)
where . | )
. _ T]_ - T2 N
We seek the solution of (30) in theform =~ =~ =~ %
0—eﬂo+e261+ TR - (82)

(%,; substltutmg (32) in (30) and on equating coefficients of equal powers of e we
obtain .

(33)

PR , ﬂo_ =( Py | lﬁeﬂ»’? ) 220,
@ \oR T T e, ) R
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éaetl — ( Py 180T, ) 8%, | 1607y [(-f"i‘! )22,;&0‘ W"] sy

O?R ’_ - 31030? ) a¢42 ) N gkgcp as& Y allbz . ) :
......... e T
* The boundary conditions (31) with the help of (32) take the-forin
() 6 (0) =B (00) =0, ] o (35)
@ k@) =1 01(——oo)~o ’
Zerotk Order Approzimation ‘
The zeroth order equation (33) in terms of the similarity- variable defined’ by .
\ vz»—sb/(tﬁl)% TN T ~(36)
where ‘ S . e
T : ; __Pokl lﬁﬂTz LT '
A= o FTHhe, (37)
reduces to T : ’
: a6, | d0 L .
| # e e
which under the boundary conditions - E A
B (00) = 0, 8 (— o0) = 1,
admits the following solution T - )
"’ ’ : : e T ,;u'“,,. T
0 =(1/2) erfc (?) SR (39)
' Fwst Order Apprommamn o /
) The first order equation (34) by usmg (35) reduces to ’ '
6, |, q de, 16Ty ( a8, 6, 1 ‘
R T T ) [ d«;\) o ] @

~ which by using (39) and the boundary conditions o
0, (o0) = 01 (—‘°°) = 0

admits the following solution

01(,7) 132 [ {erf( ) +f'!)e1'f0( )  orf (_;7.)%
i) He w

~ where
? _].GO'T
' P Bhaprey T :
NORMAL REFLEXION OF SHOGK F@OM A
HEAT-CONDUCTING WALL ot
It is assumed that at time ¢ = 0; a plane shock of given strength 18 reflected from the
face, y = 0, of a wall which occupies the region y > 0. .If viscosity, heat conduction and
radiation heat conduction are neglected, the velocﬁ:y U, of the reflected shock can be
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determined. A.contact region near the face of the wall exists which influences the external
ideal-gas flow. In what follows we determine the distribution of temperature, pressuse and
velocity in the contact region and thereby show how the shock is affected by the conducting
wall. We use the subscripts 2 and 3 to denote the flow varlables ahead of and behind the
reflected shock respectively. R

In the gas (in the region y < 0) ad]acent to the Wall the temperature satlsﬁes
equatlon (19) which we rewrite in the form

5 = (o 7 )t % (T “2)
‘which for & = ¢,T and k, = ¢,PT®, reduces to o
8T [ Py, , 160 2?7 s
at ( cpR +; e ) ot : “3)
In the region y > 0, the temperature.of the solid satisfies the diffusion equation
| of b 20 : (44)
P12 Putw . 8Y .

where k. is the thermal conductivity, Pu the 'dexis'}ityv and ¢, the specific heat of the wall.

~ The initial temperature of the wall is denoted by T',: Equation (43) under the boundary
condition

T —>kT3,aSt[Jk -> — 00, o
admits the golution

T-TS=B[1'+érf(§%t-);)]‘(iny<0j} S

o (P, 160 )
e o )

and B is the constant of integration,
Equation (44) under the boundary condltlon :
T >Tyasy > + o0,

where

admits the solutipn

m_om_ gl R N PR
F—T,=4 [ 1 —erﬁl(_z_(ﬁt)_i_) ]{m y>0), - (46)
where : B = gk

and A4 is the constant of integration.
Further, by using the condition

T 1 - :
by T ] [kw ] \ 41
[g’ay _{*‘ 1’/='—0 - ay y=+0 . ( )
the constants A and B are'détermined ’ o o

;4-_—1"4‘_1'3:_“"1_) B —T—Ty)
B TR N T )

;o | . (48)
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where )
s m-—"{* pﬂ'-‘ﬁ L., } )
By substltutmg (45) in (20) we determme the Eulerlan dlstance y glven by ‘
_ T\ _ ¢ “‘Tl{sb vy
2 (ﬁa.t)% (m + T 3 ) 2 (Bt ( ‘ ) 2 (ﬂ:;t)% ( 2(B)d )
17 [ — (*484¢) ‘ : :
A+ 'ﬂ_/( e v — l)} T ‘ (50)

- The velocity distribution in the gas is determmed from (21) by using the condition
that the particle velocity must be zero at the Wall hence

_ (e, 160R . ) of (ﬁa  160R ) aT-}i"‘
% (cp~+ 3P3029P o { cp__}" 3Pgcycp 3?& '/‘=0,‘ '(51)

A 4m),

where T' is given by (45).

‘Outside the contact region’ 2L -0, a'rid" therefore, the Veldé'ity there is

2y :
- ) o — 160’R a_T ‘ o
b { : V3Ps"20p ) Y. }¢ =0
(Ta T).. 4 o
(/34")* (m +1) o - -(52):

Expression (22) for pressure contains the unknown function g (¢) which is determined
on the assumption that the effect of the contact region on the external ideal-gas flow
is small

Substituting _ ‘ - s
' u=0up=w+pp=P+p, (63)

in the ideal-gas flow equations and on neglectmg the squares and higher powers of the
perturbed quantities the wave- equatlon for »' which admits the solution

w = F (4y + y) + G (4t — ), ; (54)
where A4, is the isentropic sound speed behind the reflected shock | |
 The perturbed pressure p’ is given by
P =g [ F (4gt + fl) - (Aat -~y - (55)
( Ma]nng use of the boundary condition (52)at the edge of the contact reglon (at the wall y= 0),
we obtain ‘
PUNFOU=—=L
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where
. (@, — 1y -
(34‘"‘)} (‘m +1)

| At the unperturbed shock p0s1t10n glven byy = — Ug (U, == shock speed), ‘the - vekmﬂ;y
and pressure perturbations are related by the equatwn

- L P= wsd3¢”(M,,)u, mo 141
where i :
| Ms= 4y
and

oM, [(y —1) M2 + 2]
@y —HMUE+EB—y)

Substltutmg expressmns (54) and (65) in equatlon (57) we obtam L
o Cia 144 (M) | |
Fidy—Uye} = {_—¢ Fbxe{ vl o

¢ (Ms) ] [Sée Appendlx, eqn, (10)]

-~

whmﬁ can be put in the form -

P (= NG 700, BN 59)
heye £ ble, N=—a— -
where {13 & vartable ;;‘T‘""S(MQ‘
- We put £ = Aat in, (56) and on subshtutmg forF(&) from (59), we obtain the equa-
~ tion for G (§) - _
e . Ng (Ag)'+-a‘<f)‘="~‘ﬁ- (_Aslf)* : - (60)
which has the solution . .. o
G(g) {N /(A)f} G (61
Makmg use of (59) we obtam R R 3 |
IN . o o
T = M ‘{(N/Ai) } (As/s‘)* b (62)

Expressmns (54) a,nd (55) on using (61) and (62) o

e L [ N 1
e P O X 777§ R Ty 77 Wy ] (63)
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o wdilL [ N/} 1 ] e
SRREe /IR Y By 7R i =Ry (69

Ttis noted that the function g () in (22) is equal to the perturbed pressure ab the edge of the
contact region, so that from (64) and (22) we have

_ __ wgd i (N/A) 1 1
10=0)0 = —@po)—t * (wmx1 " E P
From the perturbed shock equations we obtain the perturbed shock speed Us'
Uy ——*/’(Ms)us . o (66)
where
741 (V”‘l)M2+‘2 ‘ |
M)y="T-_ . )
(M) 5 ey —DMEL (G y) [See Appendix, eqn, (11)]
Making use of (63) at y = — U (66) takes the _forni ,
Usl — ' 'l' (Ms) L (N i 1) 1 . i (67)

TAFMP (NP =Ty &

which-shows that the perturbed shock speed varies inversely as the square root of time so
that as¢ -> oo the reflected shock speed approaches the valuebased on ideal-gas theory.’
Hence the reflected shock is attenuated due to the combined eﬂ'ects of molecular heat con-~
duction and radiative heat conductlon .

APPENDIX }f‘;

Takmg into account the small perturbatlo%s in the flow variables behind the reflected
shock due to the presence of the contact region, we write the Ranking- Hugonmt conditions

oy (U= U wg) = (g ) (— Uy = U+ ), o
‘wg(—U;-—U;+u2)2+P (@ + o) (= U j—U +u3)2+P3+ps, @ -
+ ps o
1 3 3 —1 .
Py +py <( +1) )J\ S
P, @y + p ) ®
{W+4%—W—D 2 3}
Wy
Neglebtmg second and hlgher powers of perturbed quantities, we deduce from equation (3)
4ypy Py ‘ @
‘”2{(7-[—1)'——7—1)}{(7—1-1)""(7"'1 sl
Similarly, from equation (1) we obtain -
RE N ﬁ_U;.l.(_.‘ﬂ?. - )Us' . Y
ws - wy w3 o .

-
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and from equation (2) we have o _
- o =200 — Ul ‘ (6)

Using the relation ' N . A
y—HM2 2

| P TE ) e D
in equation (5) we get ‘ h
_P_g’__U = (7“—'1)M82+25’ b 2 } ’
Lo, = TN v o g o ©
From equations (4) and (7) we obtain -
Py ‘w+nM4 : -
From equatlons (6), (7 ) and (9) we deduce, ' ‘ | 4
P = waAa‘ﬁ (M) w
whero o
2M8f ——1M2 2k
¢ QM) = A SN a0
’  TH=0EFEE—A SR
: Ehmmatmg Py p3 and ws betwaen equatlons (8), (1), (8) and (10), We obtain .
' +1{ 7-_1)»M2+2 ’ / 3 R
U = ‘ 1) -
mgurre—m )
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