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The temperature distribution in a semi-infinite solid generating heat according to an exponen- 
tial law, has been obtained by the use of Laplace transformation. The solid is in contact with a 
viscous incompressible fluid which starts moving parallel to it impulsively with a uniform 
velooity. In the solution is obtained a non-dimensional number A (= (I. uOa/Q, L2).  The effect 
of A on the surface temperature of the solid has been presented graphically. 

Johnson1 has studied a problem of heat transfer from a moving fluid to a solid with 
the assumptions that the fluid is initiauy a t  a constant temperature and is set in motion 
impulsively with a uniform velocity along the surface of a conducting semi-infinite solid 
of zero initial temperature. The fluid region is also taken to be. semi-infinite. At *he 
solid fluid interface the conditions of continuity of flux and temp'erature are assumed. 

In many practical situations we come across problems of heat generating solid in 
contact with parallel fluid flow. Such problems, for example, are very common in chemical 
engineering processes, heat exchange mechanisms and reactor technology. In order to study 
the effect of flow on the temperatures of the fluid and the solid it is necessary to solve both 
the flow and beat transfer equations for the fluid together with the conduction equation for , 
the solid. 

In this paper we find a solution to the problem of a semi-infinite solid, generating heat 
according to an exponentiaLlaw of heat generation, in contact with parallel flow of an 
incompressible viscous fluid. (Exponential source of heat has already been considered by 
various authors. Carslaw and Jaeger2 have considered this type of source in studying some 
problems of heat generation in semi-infinite solids. Cook3 and Jeffreys4 used an exponential 
source as an approximation to the heating of the body by microwaves and radioactive 
heat generation respectively). The system is assumed to be at zero temperature initially. 
The fluid is set in motion impulsively with a uniform velocity along the solid surface. The 
velocity distribution in this case satisfies the diffusion equation for which the solution is 
known. This known velocity function is substituted in the heat transfer equation for the 
fluid and we solve the heat transfer equation for the fluid and the conduction equation for 
the solid as a conjugate problem assuming the conditions of continuity of flux and tempera- 
ture at the solid fluid interface. The solution is obtained by Laplace transformation. In the 

solution of this problem we get a non-dimensional number A = [3:] whichis nothing 
- -  - 

but ,the ratio of the square of the initial fluid velocity uo to the maximum volumetric 
heat generation Q,, in the solid, multiplied by a constant factor. 
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/ Numerical computation is carried out for the solid region and the results are presented ' 
% 

in Fig. 1 and Fig. 2 for various -values of the non-dimensional numbers X 

S T A T E M E N T  A N D  M A T H E M A T I C A L  F O R M U L A T I O N  OF T H E  PROBLEM 

Consider a semi-infinite heat generating solid ( x  < 0 )  initially at zero temperature. 
The heat generation is at a rate Qo emzmhere m and Qo are constants. The rwion x  > 0 is 
occupied by an incompressible viscous fluid of zero initial temperature and it suddenly 
starts moving with a uniform velocity u,, parallel to x  = 0. The conditions of continuity of 
flux and temperature are assumed at  the solid fluid interface. Neglecting the convective 
terms in the equations for the fluid, find the analytical solutions for the temperature distri- 
butions in the fluid and the solid. 

Defining the velocity and temperature of the fluid and temperature of the solid by 
u (2, t), TI (x, t) and T2 (x, t) respectively, the above problem can be expressed matlie- 
matically by the following partial differential equatiom: 

It is also governed by the following initial conditions and boundary conditions : 

Bmdnry  Conditions : 
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. S O L U T I O N  -. O F  T H E  P R O B L E M  
" \ 

solution of equation (1) subjeot to the initial condition (4) and boundary 
rraaditk11~ (6) and (9) is I - 

hbstituting this value of u in equation (2), we get 

. Let 2 denote the Laplace transform of a function T  ( s, t  ) so that 

w 
-at 

~ ( x , p )  = S ~ ( $ , t ) e  dt (14) 
0 

b 

- --ps 
Multiplying equalions (3), (13) and boundary condikiom (7) to (11) by e and 

in&&ating with respect to t  from 0 to a, using the initial conditions, we get 
- 

8 T I  2a uo2 
axl - q l 2 ? 1 = -  7 KO (4; q l x )  (161 

I 
mx 

(16: 

T1 = F 2  (17) 

Lr a~~ I( -- = K  LZZ?' J 
as ax (18) 

- 
TI,= 0 ,  x  3 a3 (19) 

p 2 = 0 ,  x + - a 3  (20) 

v .  tJ ' P  8 P 
where P , = - , a = - -  q , 2 = - , q ,  = -  

kl Kl ' A1 A2 

and KO ia the modified Beasel function of second ldsd and of zero-order. 
I 7 

The solutions of (15) and (16) can be wlritbn as 
x " I  - - 

L 
' -  - h e  -"-"$y J K i ( ~ ~ q l ~ ) e  ' r1 = A l e  

nvQ1 a 
- - 

i. 
5 

\ 
', 

C .  w2 J K o ( \ / g q l i ) t g a ~  , x  > o 
+ z e  

(21) 
0 



m - 
q.9 Qoe 

I 

& = A z e  - 
K 2 ~ [ & - q , ~ l  ' s < O  , 

b1ving for Ai and A, uaing the boundary conditions (17) and (la), we get 
- 9 1 8  

- YlX Qo e 

0 + F] 
Y l X  x 

a eto2 e -- J x 0  ( d F 7 q ,  t ) e-'lE de. 
* v 9 {  

where 
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Fig. 1-@,for various depths ( X )  and h (Po) .  Fig. 2-The effect of A on 8, at  X = 0. 

N U M E R I C A L  C O M P U T A T I O N  

Numerical computation for €he solid region is cmied out with the values of the 
parameters a = 1 , l( = 0 1, o2 = 40, P, = 0.7. The results are presented in 
Pi& 1 and Pig. 2 for various values of X, E', and A. The numbers on the cwves denote 
the values of the parameter. In Fig. 1 the values of the non-dimensional temperature 8, 
are plotted against Log,, 3, for X=l, 2, 3 , 4  and 5. Fig. 2 gives the efiect of A on the non- 
dimensional temperature at  the solid %uid interface. It is easily seen that A=O corresponds 
to mro velocity (u,,=O) so that the problem reduce8 to the case of a composite medium 
consisting of fluid (at rest) and solid for which the solution osn be obtained by putting 
A=O in the expressions for and 8,. It is also observed that the non-dimeasional tern- 
perature at  the solid fluid interface increases with A. 
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