TEMPERATURE DISTRIBUTION IN A HEAT GENERATING SOLID WITH
PARALLEL FLUID FLOW

P. JANAR.DANA NACHARI

Defence Science Laboratory; Delhi |

- (Received 11 February 1969)

The tempera.ture distribution in a semi- mﬁmte solid generating heat according to an exponen-
tial law, has been obtained by the use of Laplace transformation. - The solid is in contact with a
viscous incompressible fluid which starts moving parallel to it impulsively with a uniform’
velocity. In the solution is obtained a non-dimensional number 4 (= @ %,%/@, L?). The effect
of 4 on the surface temperature of the solid has-been presented graphlcally

3

.Tohnson1 has studied a problem of heat transfer from a moving fluid to a solid with
the assumptions that the fluid is initially at a constant temperature and is set in-motion
impulsively ‘with a uniform velocity along the surface of a conducting semi-infinite solid
of zero initial temperature. The fluid region is also taken to be. semi-infinite. At the
sohd fluid interface the conditions of contlnulty of flux and temperature are assumed.

In ‘many practical situations we come: across problems of heat generating sohd in
contact with parallel fluid flow. Such problems, for example, are very common in chemical
engineering processes, heat exchange mechanisms and reactor technology. In order to study
the effect of flow on the temperatures of the fluid and the solid it is necessary to solve both
tlh;e flow and heat transfer equations for the fluid together with the conduction equa.tlon for
the solid.

In this paper we find a solution to the problem of a semi-infinite sohd generating heat
according to an exponential.law of heat generation, in contact with parallel flow of an
1ncompress1ble viscous fluid. (Exponential source of heat has already been considered by
various authors. Carslaw and: Jaeger® have considered this type of source in studying some
problems of heat generation in semi-infinite solids. Cook®and Jeffreys! used an exponential
source as an approximation to the heating of the body by microwaves and radioactive
heat generation respectively). The system is assumed to be at zero temperature initially.
The fluid is set in motion impulsively with a uniform velocity along the solid surface. The
velocity distribution in this case satisfies the diffusion equation for which the solution is
known. This known velocity function is substituted in the heat transfer equation for the
fluid and we solve the heat transfer equation for the fluid and the conduction equation for
the solid as a conjugate problem assuming the conditions of continuity of flux and tempera-
ture at the solid fluid interface. The solution is obtained by Laplace transformation. In the

solution of this problem we get a non-dimensional number 4 = { ) Lz] which is nothmg
o

but the ratio of the square of the initial fluid velocity %, to the maximum volumetne
heat generatwn Qo in the solid, multlphed by a constant factor.
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y Numerical computation is carried out for the solid region and the results are presenﬁéﬂ 2

in Fig. 1 and Fig. 2 for various v;values of the non_-diménsional numbers X (~ ¥ ) .
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STATEMENT AND MATHEMATICAL FORMULATION OF THE PROBLEM

Consider a semi-infinite heat generating solid (« << 0) initially at zero temperature.
The heat generation is at a rate Qg e™ where m and @, are constants. The region z > 0 is
occupied by an incompressible viscous fluid of zero initial temperature and it suddenly’
starts moving with a uniform velocity u, parallel to # = 0. The conditions of continuity of
flux and temperature are assumed at the solid fluid interface. Neglecting the convective
terms in the equations for the fluid, find the analytical solutions for the temperature distri-
butions in the fluid and the solid. ‘ ’

Defining the velocity an(i temperature of the fluid and temperature of the solid by
u (w, t), Ty (x,t) and T, (x, t) respectively, the above problem can be expressed mathe-
matically by the following partial differential equations:

au %

= —v =0, >0, t>0 @
Kz oz ) , ’
aT, Ty, (au eU.1%0 !
me = — K =t 5 ,2>0,1>0 ,(2) ‘
T, . 9T, e o
Y T R

Tt is also governed by the following initial conditions and boundary conditio’ns :

Indtial Conditions :

% -

u= ~ @
I)=1,=0 . B ~(5)
Bmmda}y Conditions : o S |
87, &7, ] -
K, o = K, ‘5; § £8)
Y, | } ©)
> @ > O :
T, =0 ] (10)



. JaxaBDANANACHARI : Temperature Distribution in a Heat Generating Solid 107

SOLUTION OF THE PROBLEM

~.

o m mlutio;l of equation (1) subjec£"“tb the initial condition (4) and boundary . |
conditions (6) aud (9) is - S - poung

’

u = ug erf [ m/2v£ ]\

| (12)
Substituting this value of « in equaﬁon (2), we get-
O, 1 oTy_ _awd —apw |
S _kl‘at = — o e . | - | (13)
. Let T denote the Laplaée transform of a function T(axt)s0 that
._  R e | . |
T(wp)= [T(mt)e @t (14)
: 0 ' . N o - v

-

So

e : : } g . ) N ~ -_?‘
_ Multiplying equations (3), (13) and boundary conditions (7) to (11) by e and
integrating with respect to ¢ from 0 to co using the initial conditions, we get ‘

i 2a u,? 9 ) "

, : dle — T = — py * K, (\/IT, %,‘”) ‘ (15)

- BT .. Qe
, aat L < e
1—’1 = ;.’_"2 ‘ ‘ L (17)
_ x=0 s '

: - ATy _ . 4T |
Ty=0, 2> ® )
Ta=0,8>—0c - . - (20

where Pr““k;a K3q12—'7c—’q2-“k2

The solutions of (15) and (16) can be ‘Writﬁéﬁ as
. ) ’ . Ea _13 ] b:: - "'J ; L
' e T m¢02 4E F {. ]2 —q&. Co

N T £ (7 T O L
- . N . - - . : . N Ty -\;/l
N g iE 3 . )

—q , ¢

+ 27 [k (\/3 we) 0> 0 n

1 b r ‘

. (i
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B o o :
Te = Aze I—w——{%_:m,‘w<0 . (22)

Solvmg for A ‘and 4, umng the boundary conditions (17) and (18) s We get ’

. , R Q,”qlx
- 00 - s © ’
Tlva[Kl‘f‘Ke"]Fe T

| [K1+K20]P41[91+m]

auo e —a& .
T I‘K (\/P = ) ot

b N a2 —aqz a8 : .
: 0 L
s X : o '

i’ _ 2K, Fe n Qyoe )
ia K1+Kz° ; m[K1+K20]20q2 :

050 - L a5 -

o+ QO[K1”‘0K3]3 - Qe
2mK, [ K, + UKz [ +m] 2mK2p [ga—m]

m$
_ Qe
Kyp | m? — 922-&] ’

 r (\/p ae) e

The nversion of all terms in (23) and (24) is a,va,ﬂable (see appendix® V) except for the
Inst tWa terms in (23) for which we use the convolution theorem® and the lash berm i in (24)
which has simple poles at p=0 and p=rkym?. After taking inversion of all terms in (23)

and (24) we. can write down the solutions 7', (z, ¢) and Ty (z, t) in the non—dlmensmna,l form
as follows :-

\9,___[ {_ az“och —l—c]‘; [ " }
8 el [K+o]a2 oe | XfaoF, |
%X 4 Fyo? L

g <0 @

where

N

‘ - \/F ——X2/40'2F 0'6; of [X/z F)+d\/ ]
i Q[K“}""] +[K+ ] 2 = ( ik e
F (-'—X212°2)[P (Fy —-1‘5)4‘25]

Ap, ' it 1/?“(7.,‘”?’):{ 2
ZﬂK \/(Fn““f)[P(Fo”“f)-i“%] 2UVP(F0~£)+25

SRR X>:0 (26)
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Now M has two values” M1 and M2 a.ccordmgly as P > 2 and P < 2
; values are . : S
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Fig. 1—@, for various depths (X) and A (F,). Fig. 2—The effect of A o0 @, at X = 0.

NUMERICAL COMPUTATION -

Numerical computation for the solid region is carried out with the values of the
parameters « =1, K =0-1, 02 = 40, P, = 0-7. The results are presented in
Fig, 1 and Fig. 2 for various values of X, Fjoand A. The numbers on the curves denote
the values of the parameter. In Fig. 1 the'values of the non-dimensional temperature 6,
are plotted against Log,, F, for X=1, 2, 3, 4 and 5. Fig. 2 gives the effect of 4 on the non-
dimensional temperature at the solid fluid intexface. It is easily seen that 4 =0 corresponds
to zero velocity (u,==0) so that the problem reduces to the case of a composite medium
consisting of fluid (at rest) and solid for which the solution can be obtained by putting
A=0 in the expressions for @, and 6,. It is also observed that the non-dimensional tem-
perature at the solid fluid interface increases with 4.
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