AN ELASTIC INFINI''E PLATE HAVING A HOLE RESEMBLING A FOUR-CUSPED -
HYPOTROCHOID UNDER UNIFORM PARTIAL LOADING

AQEEL ARMED

School of Studies in Mathematics and Statistics, Vikram University, Ujjain
(Received 17 October 1968 ; revised 7 April 1969)

The problem of an infinite plate perforated with a square hole with rounded corners has been solved
when a part of the boundary is undet uniform pressure and the rest is stress free.  The solution
has been obtained in a closed form by using Muskhelishvili’s methods involving Cauchy’s integrals.
As 3 particular case, the solution hag been obtained for the plate with the given hole under uniform
Ppressure. ) .

The problems of finite and infinité elastic regions, when a part of the boundary is
subject to stresses and the rest is stress free are of theoretical interest. The problem of
an elastic plate with a circular boundary was solved by Goodier!. Later on, the problem
of an infinite plate with an elliptic hole was solved by mapping the elliptic bole conformally
on the circular hole?. The latter method could be applied to other types of curvilinear

boundaries. l ,
- ‘In this paper, the problem of an infinite plate having a square hole with rounded
corners has been solved by using conformal mapping. The plate is assumed stress. free

at infinity. A part of the boundary is subject to uniform pressure while the rest is stress
free. As a particular case, the solution has been obtained for the plate with the given

hole under uniform pressure._
' STATEMENT OF THE PROBLEM ‘

We consider the small deformation of an infinite plate consisting of a homogeneous ’
isotropic, elastic material perforated with a square hole with rounded corners. The
boundary of the plate is partially loaded with a uniform pressure while the plate is assun}ed
stress free at infinity. Let the boundary of the plate be denoted by 0= The transformation
which maps the region exterior to ¢' in  z-plane on to that exterior to unit circle I' in
{-plane is ‘ /

: R>0,0£K<1 :

where R and K are real constants. °

The curve C is a curve with rounded corners occuring at Fig. 1.

T w w w ™ 3m
b=7 -3ty gttty
we assume that the portion L’ of the boundary C, the ends of which correspond to

is subjeet to-a uniform pressure of magnitude P and the remaining portion L” is stress
; o1
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free. Let the ends of the portion L’ be denoted by z, and 7, and the ends of the corres-
ponding portions y’ on I' are denoted by o, and o, respectively (Fig. 2). '

* The values of 2, and z, are given as
K ‘ K
k(o). amR(a—gl)

FUNDAMENTAL FORMULAE

We use the generalised pléne stress and,.quote the following standard formula?

ofo,=20WO+W@D] @
” . o ;
g ttin, =2 ——[a®W Q)+ Q0] @
o p* m'(0) . S
Vot =xe@— 2L on_sp @
.. ml(g) : ) . .

where x = 3 — /1 4 » , u and v are the rigidity moduli and the Poigson’s ratio of
the material. . S -

The potential fusictions are

o@D =elm@l=e .
$@ =4¢{m@1 =94

PR = QWO . FO=wOwed
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- Fig. 1-~The boundary C of an infinite plate per- - K , ’

forated with a square hole having rounded Fig. 2—The boundary described by & unit cirele J7
corners, ) in an infinite elastic plate. :
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GENERAL THEORY '

Following Muskhelishwilis, if the foree across an arc olement dJ of the curve C is given
by (X.—HY,.) dl and the stress in the material on the left of the eurve (described with
increasing I} is derived from ¢ (2) and ¢ (2), then the boundary value of these functions
on(C satlsfy ‘

<p(z)+z<p (z)+x/1(z)_—zj(X —|—zY dl =fion(C

or in the transformed plane

2 G@+i @ =1 c=e'onl (3
' (0)

where f is the value of f; in terms of .

@ (o) +

The plate is free of stresses at infinity. Therefore the potential funetions satlsfymg
() ate given as3:

' X+4Y
o) = — Zad F ) log £ 494 (§) ,l
, X —i7) (6
@ = ~;‘—,~1—Wlogc+¢o(z> J
where @, ({) and ¢ ({) are holomorphic for | { | > l and where one can assume Wlthout
any effect on stress distribution that N (
¢p (00) = 0 ‘ ’ -

Substituting these expressions in (5), it is seen that g, ({) and %o ({) satlsfy the same "“,
boundary condltlon (b) with the difference that f must be rep]aced by fo where ;

fy XEIY X—iY — K8 -
Thus the functions o, (C) and 4, ({) can be easily determined from the equation
20 (&) + - ,(())90(0)+s"o(0) o @
Multlplylng (8) by 2 weget
o 1 fo do ‘
w0 (l) = — 50 = ©
Again takmg the complex conjugate of (8) and mult1plymg by 2 da/a —nﬁ
and integrating, we get » ; )
- ST g 11—- = IR
' _ 1 fo da‘ ( 3 ) ,
hie) = 2,,,; LT TEEE A0
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Hence ¢ ({) and ¢ ({) are obtained with the help of (6), (9) and (10).
k DETERMINATION OF STRESS POTENTIALS

In the present problem, the portion L’ of the boundary is subjeét to uniform pressure
of magnitude P and the rest part L” is stress free. Therefore )

Xn =‘—P005 (17, KL‘)
Y7 = — P cos (1, §)
and hence ,
(Xn +2Ys)dl = — P (dy—ids) = i P dz
Thercfore : o

l .
f= rzf(x,,+7:y,.) dl —_=—-Pz=——PR(o--—3-—K:;§)ony' 1)
0

f=—Pyony

Moving round the contour in antielockwise direction and ¢oming back to z;, the expression
for f undergoes an increase-

— P (zzk - z1)v;—= P (7 — 2)

The same increase will result for any subsequent cireuit. Thérefore the expression
(7) takes the value ' )

Pz — 2z) | P (2_1 — ;2) o' — K3

| fo=l—= "oy et i Ty T FOEEN

The value of the multivalued function log ¢ may be fixed arbitrarily at any point (e.g. at
the point o; = eif1 corresponding to the point z,); for a circuit round I’ the funetion
log o must *%ary continuously, so that log ¢ undergoes an increase 274 and Jo reverts
to its original value. Hence f, will be single valued and continuous on the entire contour.
Therefore putting this value of f, from (13) in (9) and integrating as explained elsewhere2,
we get o ‘ ' |

P [ KR o K\ -
w® = 5o - =+ {2 (1= ) ~a f g @~

A E () (- 3] @

The function #, () can be similarly found out. Thus by taking the complex conjugate
of (7), then putting in (10) and integrating, we get : . o

w® =g~ (B (=5 0) =i fme—o

1

“(13)

- gR(%._-gi zs)%—él} log (o — ) — (5, — 7 log ¢
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& — %) @ LEE¥s KR

+», 1 4% “+ K Y { %(&2:3"“713)‘?%(022'—012)\;
( 1-—‘73;4 ) i . ' ’ )
+ (03— &) o }]"" LK + P (0 (15)

The expressions (14) and (15) give the required stress potentlals Thus ¢ (£) and ¢ (2)
can be found out with the help of (6), (14) and (15). -

DISPLACEMENT OOMPONENTS ON THE BOUNDARY

The components of stresses and displacements can be found out with help of (2), (3)
and (4). We give here the displacement components on the boundary of the hole.” “Thus
the displacement v is given by

41;,11.: _ ng (sin 4'92_sin401)— T?—( sin3 6, —sin 3 6, )

+ (x + 1)' [cos 0, —cos 6, — —;!; (cos 30, —cos 3 01)] 2

+ 1+ [(3 cos 36 —-cosog)(e-{« 02——1\:)-——( I;—cos301—cosel)(0+01+ﬁ )]

)
[( %+ f "msoz)l"g (12”“‘ 2;6 ‘)—f( Bin01+—gz~sin3al)‘

etz
+[( 02)——?(sin28-—sin20)——§(1+x) (2ﬂ+ol—o,)]eosa

(sml)1 sinoa) ng(s:n301—sm30 +{ smol—-smﬂ)

+ls
K 3+ K3)(1 -
+—§' (sm301—sm302)} X m {Kx+1(+_£2+)2(K—:.08§)0 ]00520
+ [Eﬁ (65 — 6,) + %— A+x@Cn 06— 02)]005 30 |
' sin b—6
+ [—?(0032 6, -—-005202) +log( ——a——g-é—- )] sin @
’ 1
_ ‘ sin ———

E o\ 2K 17
+[—3—(00891—00802)——Tx(008301 005303)+5—('1—‘_F—)—'{00891

_»coé 92—%(008301"‘008303 } X{Kx 1‘1—‘1}5:.);111—039 ]sm20
0, — 6
K :
—f—-—é—log (

sin

sin _01 ;’0

’)sinso o (16)
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Thp _displgc_ement v is given by
;gv’ K3x (cos40 cog401)-.- —19{—( cos 3 8, — cos 301-)
+ (1 +_X) [sih 0, —sin 0; + %{— (sin;3 0, — sin 3 01) ] 6
. _[(L?f- cos 3 0, —»cosoz){(x -— 1\) log ( 2sin b ;- b ‘) —( 0, -0 —n) }]

_(_{3(_ ef')s?)ol——cosﬂl){(x—;1)~log'(’2sin 912—0 ')-'—(8,-}-‘0+n) }]

—1 [(Sin 0, + 13{— sin 3 0,,)(02 +9%n)—(sin 0; 4 —Ié— sin301)(01 + 8 +n)]
- ' \ . 0, —0

sin ——
(003202—~cos201) + (x—1)log %
\ lsin 22—

)+ (2« + 8, —o._;)" c?s 0

K 2Ky 1 ¢
=13 (cos 6, — cos 6;) — =5 (cos3 6, —cos30,) + 3AF9 ?cos:oa ~ eop 0, .

—_;% (ces 38, — cos 30, )} { B+ K (1 + K) l]

+1 +K2+2Kcos40)
.+‘?I (x—l),log(

0, —6 .
-‘—[(92 6,) — 6(311129 sm201)+1r+———-—?—2—]siha

o) by

sin

-
sin. —2 b

2 ’ /
) — @7 +8 —‘02)] cos 30

K . - : 2 K R R 4
— [—3— (sin 6; — sin §,) — —3—?-( (sin 301 —sin 36,) + sin 6,

ST L

. K . . Y 3 @A — ‘
— 8in-6, -+ — (s 36, — sin 30,) {K X 1(++K2K4{'(2"K cf)(s)4 ;0}] sin 26
5

. — -+ (0, — 01) + — (2‘"’ + 6, — 02)] sn3f R (17)

The expreqsmns (16) and (17) give the displacement components on the boundary of the

hole except-at the end points # = 8, and A = 6,, where these hecome infinite. In fact
these are the points yielding elastic faiture. However, if one side of the square hole between

R , 37T R . :
b= and 6 = — is loaded, then the dlsplaeement-emnponents (16) a.nd (17)

reduce to the following expressions
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e K)o 1 B o)

(e () )

;ﬂ - i
T ] —3——,—4~(3x+5))0080
sm7(—8~——§—) | | . )
sfn(3ﬂ | 0)

8 2 .
' p 7 »)smo
sm(_S_—7)

1K 7 1 E\S. =~ B+E0—K 7] ...
‘/2['§(I+2X)+3 T (1““?) {K"_ 1+K2+2Kcos405] sn26

+%(3x+1)cos30+‘log(

sin,‘—g——"—P—) :
+—I§]og( f '02 l)éin::jb ()
= si#(-8—:~7) .
%‘—”e—%ﬁwvé‘)a——%(ljué)[u—x)
'log( 4sin(%———g—) 'sin(%—e-—g—l)‘)+(”+20)]
3 ( sm(%“—g“) | 3#]; . o
+| @ —x)log| | —— 7 )+T cos 0
ey el

1 B+ K% (1 +K) V
+V2[3(1+2"+3(1+x)( + )5K +1+K2+2Kcog40%‘]00520

. sin(g% 0)
K N . a L T TaT ﬁ .
—?[(l—x)log( 8 2 )-——37:‘00830

. {7 0\
sin (5 — )

K \ T . ‘ ‘. .
f(E-1) n 0+ K (7_1.) sin 3 0 9.

The expresswns (18) and (19) give the d lsplacements at any point on the boundary, when

one side of the bolg lying betWeen 6, =

” g7
- y 8y = T is loaded uniformly.
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SOLUTION FOR THE PLATE UNDER ALL ROUND UNIFORM San
PRESSURE , 4

The solution of the problem when the plate is under all round uniform pressure may
be easily deduced from the above results by p\mmg

’ %1 )

The resultant force vector of the applied forces on the boundary is also zero i.e.,

X 4+1Y = 0
Thus the stress potentlals (14) and (15) reduce to '
PKR )
¢ O="37 -
‘ e PRK(l—-—I;—Z‘) .
: = — 21) . -
The displacement components (16) and (17) take values R
;§ﬂ=——2f0038+§ﬂKxcos30 | (22)
;,‘;;’ =—2msin0—§7Kysin30 @
If we put K = 0 in (20) to (23), we get the known result for the plate Wlth a elmular hole2
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