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Tne stability of a viscous flow between two soncentric rotating porous cylinders has been examined
when the difference in radii of the cylinders is small in comparison with their mean radius.
Critical Taylor numbers have been calculated for various wave numbers and velocity ratios of
the cylinders. Theoretical results show that injection at the outer oylinder improves the
stability of the flow whereas suction has an opposite effect.

The problem of stability of viscous flow between two rotating concentric cylinders
has been the subject of theoretical and experimental investigations by Taylor!, Meksyn?2,
Chandrasekhar® and Sparrow, et al%. Taylor! was first to study the problem by considering
the narrow gap between the cylinders and obtained a solution by expanding the velocities
in terms of & series of Bessel functions of order zero and unity. Meksyn? derived a closed
form solution applicable only to the narrow gap for the instability condition by using the
method of asymptotic expansion of the velocities in inverse powers of Taylor number,
taken to be a large parameter. Sparrow et al* studied the stability of flow between the
rotating coaxial cylinders having an arbitrary gap. Their results are used in defining the.
range of applicability of the solutions of Taylor and Meksyn which were derived only for
narrow gap conditions. Chandrasekhar® has also considered several aspects of the stability
problems for the narrow gap. Mention may also be made of a recent paper by Richie® who
has analysed the stability of viscous flow between the eccentric infinite cylinders having a
narrow gap. An approximate solution of the resulting eigen value problem has been found
by rotating the inner cylinder and keeping the outer one stationary, The difference in radii
of the cylinders has been taken to be small. It has been established that increase in the
eccentricity ratio has a destabilising effect. Thomas & WaltersS have also drawn a similar
conclusion to illustrate the effect of elasticity on the stability of flow.

This paper is an attempt to investigate the stability of tho flow betwoen the concentrie
rotating porous cylinders in the presence of radial velocity. In the physical sense the radial
velocity will mean suction or injection according as it is directed away from or towards the
axis. The study is restricted to the case in which the difference in radii of the eylinders
is small in comparison with their mean radius. B :

Critical Taylor numbers depicting the onset of instability have been calculated for
various wave numbers and velocity ratios of the eylinders. The theoretical results show that
suction has a destabilising effect on the flow while injection tends to stabilise it.

FUNDAMENTAL EQUATIONS
The axisymmetric flow of a viscous incompressible fluid contained between two rotat-
ing coaxial oylinders is governed by the equations
, ' 89



8 ~ Der. Seu. &, V6t 20, Armm 1970

) ) . g R ' . N,,J R
B ur;aﬁ _l_.u,iu_'_—.ﬁ_ =.—_a_(..£)+,,(v2ur__%) 1) 2

at ar a2 T -oer\p
—a—f",;+u,%’:i4w%}=—% (l;-) + Vi (3)
where ' vﬂ‘s'fr_:_.;_.%__:?q. 83:2_' |
The equationJof continuity is o :
Pisimo

4%,, g and u, are components of velocity inrthe increasing 7, & and 2 directions, p the
density of the fluid, p the pressure and v the kinematic viscosity. z-axis coincides with
_the axis of the coaxial cylinders. o

In the preéence of suction (or injection) at the walls of the cylinders, these equations
admit a stationary solution of the form ' '

u, = Ryufr =T ("
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where A — Bt , ', the radial velocity of the fluid at # — R, (radius of the inner
Yy

oylinder, 4 and B are the arbitrary constants. If Q be the angular velocity of the fluid, we
have ‘ R

| Q:Arx-}aB/rz ' ' (6)

If the inner cylinder =R, and outer cylinder 7= Ry rotate with angular velocities 2 and
82, Tespectively we have S

w=RQ . forr=R
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-Substituting in (6), the constants 4 and B are
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where , p =20, and n = By/R;
Rayleigh’s Criterion .
* Rayleigh’s Criterion for stability of inviscid Couette flow requires
‘ 2 ’ , §
D)= Q- (PR >0 | ©)

Sdbstituting the value of £ from (6) in (9) we get
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Putting the values of 4 and B from (8) in (10) @ can be expressed as
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In the case of suction at the outerwall, Rayleigh’s criterion for stability of an inviscid
flow yields the condition p > 72 which is same for all value of X = 0. However when
the fluid is injected into the flow fisld from the outer cylinder i.e., when A << 0, the eriterion
requires an additional condition — (A 4-2) > 0. .

PERTURBATION EQUATIONS

Assuming perturbetions to be axisymmetric and independent of 0, the linearised
equations of the problem can be written as

2, aU v, 2. aw s, _ Y ) ,
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du, , Y s S
or +— + 7 = 0 ‘ (15)
where U - u,, V+uy , us are the velocity ecomponents in the pertqrbed state, and
2 % | )
The disturbances can be analysed into normal modes of the form.
u, = Pt y (r) cos bz N

uy = ePy () cos kz

u, = eP w (r) sin kz (17
w = ePt 9 (r) cos kz
where k is a wave number of the disturbance and p is a constant. )
Using (17), equations (12) to (15) become.
2Vv U wm ew '
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Eliminating w from the above equations, they can be rearr#nged as
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substituting U = ——and V=A 7 -+ Bjr in (22) and (23) we get
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NARROW GAP APPROXIMATION

Applying narrow gap approximation i.e., considering the difference in the radii of

the eylinders By —R, to be small in comﬁarison with the mean radius ﬁ_’g_@z_ , We
oah replace Dy with D and further (8) and (6) may be approximated as
a4 T [0—n E 2 a—w -1 — 2] (26)
A:+B/72=91[1——(1——p)l]\' | . @
where - ¢ = A——%%j ‘,

The equations (24) and (25) are made diménsionléss by: measuring radial distanees in
terms of d = Ry, — R, . These can be rewritten in theé light of narrow. gap approxi-
mation as ' . : : :
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where k=a/d and o= pdz/,,

When the marginal sta.te i stationary, equations (28) and (29)‘ are siﬁli)liﬁed further

- . 2,2
by putting o = 0 and applying the transformation ¥ —— _2_91:?_“ u
(D2 —aPu="(1+al)v - (30)
(D2 —a?) v= — Ta?u[(1 — k) + %y {] (31)
Where - ] T = 2912d (d Rg/d + 2) ) (32)
and - by = ———@—— - (33)

SOLUTION OF THE CHARACT-‘ERISTIC VALUE PROBLEM

Following Chandrasekhar’s technique we may take

0= > Oy sin N

=

and because of (30) one has’

\

o ]
W;E%_—W { A, cosh al + B,(™ ginh al 4 4,(™ { cosh a{

+ Bz(m) ¢ sinh af 4 (1 4+ af) sin mal + m:——%:———”_’:g' cos mnl } ' (35)

Under the boundary condii:ions @ = Du = Ohat - 0 and { = 1, the constants of
- integrations 4,(m), 4,m, B,(™, By(m), are determined by following Chandrasekhar2,

Multiplying equation (31) by sin na{ after substituting the values of u, v, 4,0m),
Ax™, Biim) and B,™ and integrating the resulting expression, we get a system of
linear homogeneous equations having arbitrary constants Cy/(m?n® -4 @?)2. Since these
ate not all zero, after some simplifications we must have .
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The first apprommstmn of the equation (36) is obtained by puttmg 1h l) ‘clement’ |
of the matrix equal to zero. Thus we have -
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In the limiting case when there is no suction ér injection of the fluid ie., when A or
ky - 0 equation (37) reduces to Chandrasékhar’s result. :

The values of log T, for a fixed valueof a = 3-12, are plbtted ’Agamst ¢ in Fig. 1.

. < .
The various curves are presented for 4\;0. The curve for A = @ gives the case of no radial

velocity.
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Fig, 1—Critical Taylor number 7¢ for the onset

of instability as a function of y for various

values of ). and g = 3-12,

DISCUSSION

The numerical results have been res-
tricted to the first approximation only.
In the case of suction it is shown that the
critical Taylor number T, decreases
steadily as the suction parameter A increas-
es. Thisimplies that suction at the outer
wall has a destabilising effect on the
fluid confined between two coaxial rotating
cylinders. This behaviour of the flow is ..
similar to that which has been found by
Thomas & Walters® while studying the
effact of the increase in ‘elastic properties
of the fluid on the stability of visco-elastic
flows. The effect of eccentricity studied by
Richie® is also similar. In the case of in-
jection through the outer cylinder, it is
observed that the critical Taylor number
increases steadily. It is concluded that
injection tends to damp out the distur-
bances, Numerical results in this case

N
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- have been calpulated forA = —1, —1I-1 and —1-2. Nogative values. of "X -w
héve to be less than 2.as we have seen in the stability eriterion. d/Ry his been taken '~
a8 0-1 in both the cases. We find that the first approximation does not give the correct
values.of T, for A > or < 0 jn the region 9:5 << p < 1-0., e o
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