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Tne stability of a viscous flow between two concentric rotating porous cylinders has been examined 
when the difference in radii of the cylinders is small in comparison with their mean radius. 
Critical Taylor numbers have been calculated for various wave numbers and velocity ratios of 
the cylinders. Theoretical results show that injection at the outer oylinder improves the 
stability of the flow whereas suction has an opposite effect. 

The problem of stability of viscous flow between two rotating concentric cylinders 
has been the subject of theoretical and experimental investigations by Taylorl, Meksyna, 
Chandrasskhars and Sparrow, et a14. Taylor1 was first to study the problem by considering 
the narrow gap between the cylinders and obtained a solution by expanding the velocities 
in terms of a series of Bessel functions of order zero and unity. Meksyn2 derived a closed 
form solution applicable only to the narrow gap for the instability condition by using the 
method of asymptotic expansion of the velocities in inverse powers of Taylor number, 
taken to be a large parameter. Sparrow et a14 studied the stability of flow between the 
rotating coaxial cylinders having an arbitrary gap. Their results are used in defining the 
range of applicability of tho solutions of Taylor and Meksyn which ware derived only for 
narrow gap conditions. ChandrasekharS has also considered several aspects of the stability 
problems for the narrow gap. Mention may also be made of a recant paper by Richid who 
has analysed the stability of viscous flow between the eccentric infinite cylinders having a 

c narrow gap. An; approximate solution of the resulting eigen value problem has been found 
by rotating the inner cylinder and keeping the outer one stationary\The difference in radii 
of the cylinders has been taken to be small. It has been established that increase in the 
eccentricity ratio has a destabilising effoct. Thorns & Walterd have also drawn a similar 
conclusion to illustrate the effect of elasticity on the stability of flow. 

This paper is an attempt to investigate the stability of tho flow betwoen the ooncentrio 
rotating porous cylinders in the presence of radial velocity. In the physical sense the radial 
velocity will mean suction or injectioll according as it is directed away from or towards the 
axis. The study is restricted to the case in which the difference in radii of the cylinders 
is small in comparison with their mean radius. 

Criticd Taylor numbers depicting the onset of instability have been calculated for 
various wave numbers and velocity ratios of the cylinders. The theoretical results show that 
suction has a destabilising effect on the flow while injection tends to stabilise it. 

F U N D A M E N T A L  E Q U A T I O N S  

The axisymmetric flow of a viscous incompressible fluid contained between two rotat- 
ing coaxial oylinders is govarned by the equations 
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where ~2 a az b+- 

J a+ + 7 e r  . - 
The equation of continuity is 

u,, ue and % are components of velocity in the increasing r ,  8 and z dimtiom, p the ' 

density of the fluid, p the pressure a ~ d  v the kinematic viscosity.' z-axis coincides wit& 
the axis of the coaxial cylinders. 

In the presence of suction (or injection) a t  the walls of the cylinders, these equations 
admit a stationary solution of the form 

ur = R1 %/r = U (r) 
hi-1 

9 = A r -+ B/r = V(r) (6) 

% = O  . 
\ 

R1f4 , y the radial velocity of the fluid at I = Rl (radius of the inner \ where X = - 
v 

oylinder, A and B are the arbitrary constants. If Q be the angular velocity of the fluid, we 
have 

I 

- 

If the inner cylinder r=Rl and outer cylinde'r ~=R,rotate with angular velocities$?l and 
a, respectively we have 

ue = RI QI for r = Rl 

Ug = R8 fh for r = R, 
(7) 

Substituting in: (6), the constants A and B are 
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where p=QrJrCd18ndq=RI/~ . ... 
Rm$%&vs C*on 

Nyleigh's Criterion for stability of inviscid Couette flow requires 
2  

cP ( r )  = - 
Q -& (r2 521) > 0 

Substituting the vdue of 52 from (6) in (9) we get 

Putting the value8 of A and B from (8) in (10) @ can be expressed as 

@ 5 - -2 (A+2)52?  $ ( ~ - P T  " ( l - ~ / ' ? ~ )  :-' ' -  ( 1  - PI+) 
h - 

1  - P'l 

In the case of suction a t  the outerwall, Raylsigh's criterion for stability of an inviscid 
flow yields the condition y  > q2 which is same for a11 value of L 2 0. Hawever when 
the fluid is injected into the flow field from the outer cylinder i.e., whm A < 0, the criterion , 
requires an additional condition - (A + 2 )  > 0. 

P E R T U R B A T I O N  E Q U A T I O N S  

Assuming perturbztions to be axisyrnlnetric and independent of 6, the linearised 
equations of the problem can be written as 

where U -+ u,, ?'Sue , Ua are the velocity components in the perturbed state, and 

The disturbances can be analysed into normal modes of the form. 

U, = t@ ec (r) cos 7cz 

i ug = e 2  u ( r )  cos kz 
% = e d  w ( r )  sin kz (17) 
- 
w = ep' Z ( r )  CM kg 

- 
where k is a wave number of the disturbance and p is a3constaxit. 

- 
Us* (17), equations (12) to (16) beeorne 



and 
1 V 2 =  DD*+- -  -k2+=D,D-k;2 * r2 

where 

Eliminating w from the above equations, they can be rearranged as : 

AV h + l  , I  -, 
substiktiog U = - and V = A r + B/r in (22) and, (23) we get r 

v hv 1 d2 hv' 1 d > (DD* - @ - P / V )  (OD* - u -F 7 p- (D*u) + - - - (D*u) P r2 d~ 

A 
and v ( D o , - P - p ] v ) v  =Ar (A + 2)u + (D* V )  hv (25) 

N A R R O W  G A P  A P P R O X I M A T I O N  

Applying narrow gap approximation is., considering the difference in the radii of 

the cylinders Rg -Rl to  be small in comparison with the mean radius R1 + 2 Rs y we 

aan replace D, with D and further (8)  aad (6) may be approximated as 

' A  
A r  =- ..- * [(I -14 (R&) + A (1 -4 (5  - 1) - 21 

A-t -2  (26) 

where 

Tbe equations (24) and (26) are made dimensionless by measuring radial distances in 
of d = Rs - . These can be rewritten in the tight of mmw gap approxi- 

mation as 
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and 

where k = a/d and u = @a/v 

When the marginal state is stationary, equations (28) and (29) are simplified further 

2Q1aaa2 
by putting u = 0 and applying the transformation u -+ u 

v 

where 

and 

S O L U T I O N  OF T H E  C H A R A C T E B I S T I C  V A L U E  P R O B L E M  
\ 

Following Chandr~,sekhar's technique we may take 

v = 2 n  sin mn5 (34) 
r n - I  

and because of (30) one has 

Al(ml cot& a{ + B J m )  sinh a5 + ~ A,(m) 5 coah d 
(m2G + 4 ) 2  a 

4arn77 + B J m )  5 sinh a( + (1 + uc) sin rn-5 + m%a + as COB rnnt; 

Under the boundary conditions u = Dzc = O~at 5 = 0 and 5 = 1, the constants of 
integrations A J m ) ,  A$m),  B l ( m ) :  B 2 ( m ) ,  arc det ermined by following Ohandrasekhar 2. 

Multiplying equation (31) by sin nnf; after substituting the values of u, ~, Ai(m),  
A2(m), B 1 ( ~ ) ,  and B J m )  and integrating the resulting expression, we get a system of 
linear homogeneous equations having arbitrary constants C, / (mV 3. Since these 
are not all zero, after some simplifications we must have 

w 



\ 

(s~nh a cosh a - a) 1 + (1 + a)( -'l)n+-] + 
J 

{ + (sinha-acoaha) (- l )n+l+(l+a)(- , l )m+l}-  ' 

- 4m sinh a 
(man2 + a2) (ainh a + ( -1)m-1) { ( - - I}]+ 

4mnn2a ( - l)m+l %nn ( - 1) - 4aw~7r 
+ (dd + a2)(n2na + a2) 'l - (n2n2 + '1 [ m2na + a2 sinh a + 

fm' 
' f Ym (sinh a cosh a - 2a) ~ a + ~ m ( s ~ h a + a c o s h a ) -  . n ( - l)n+l 1 

nn(6a2 - 2n%2) k, 
- Ym a } ] + (n2n2 + 

[ - 7 (Sinh2 a + p m  (a sinh a + as cosh a)- 

mn( - I)*+' r 

n 4 a sinh a + /I,,, (a2 + a sinh a cosh a)- 
I \ -, 

f 0 if m + n is even and m # n 
L 

where x n m  = 1 3 

where ' . 

and 4a 
Y- = ( - I)-+' (1 + a) + @,,p + a sinh a. 

f' 
The 'Brat approximtbtion of the equation (96) is obtainid by putting (1; 1) alemmlt 

, x 

of the matrix eqwi to zero. Thus we have ' . = 
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x {(ainh a a 0 8  a - a) + (ainh a - a coah 0) 
4 3 4  - 

4na t 

-2 + a2 
sinh a + 

s h 2  a - a2 X 

x {- a (1 + msh a + 2a) +sinh a (1 - a) + (1 + a) sinh a cosh a 

4na C 2a + 2acoaha+sinha(l-2a2-a sinh a + + ( 9  + a2)(sinh2 a - a2) 

z (a03 - 2 9 )  kl + 2 cosh a + cosh2 a) '1 + (d + a218 (aw a - a2) J 

x a (a sinh a f sinh2 a) { 
In the limiting case when there is no suction or injection of the fluid i.e., when h or 
k, -t 0 equation (37) reduces to Chandrasekhar's result. 

The values of log'To for a fixed value of a = 3.12, are plotted 'against p in Fig. 1. 

The various curves are prasented for ~ ~ 0 .  The curve for h = O gives the case of no radial > 
velocity. 

6 4  - The numerical results have been res- " 
b.-1.1 tricted to the first approximation only. 

I- 

In the cwe of suction it is shown that the 
A * . I . l  critical Taylor number To decreases 
A I .  steadily as the suction parameter A inareas- 

es. This implies that suction a t  the outer 
wall has a destabilising effect on the 
fluid confined between two coaxial rotating -- r.c cylinders. This behaviour of the flow is 

f 4 -  c.o similar to that which hw bean found by 
Thomas & Walterss while studying the 

A .  effect of the increase in elastic properties 
A = 2.0 of the fluid on the stability of visco-elastic 
A = 1.9 flows. The &at of eccentricity studied by 

Richie5 is also similar. In the case of in- 
8.0 

jection through the outer cylinder, i t  is 
0. te 0.09 4.50 observed that the critical Taylor number 

CL increases stedily. It is concluded that 
Fig. 1-4ritioel Teylor number Tc for the oneet injection tends to damp out the distur- 

of inatability ea e funation of for various bances, Numerical results in this case 
vhiItO8 of ). hnd 1: 3.12. 
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have Been mblated for 'A = -1, -1.1 and -1.2. 
h6ve to be less th tmn 2 as we have seen in the akbiIity cr 
as 0.  I in both $he cases. -We find that the first approximation 
values.of To for'h > ar < 0 in the region916 < p < 1 4 . ,  - . 
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