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Various kinematic and kinetic"properties of steady diabatic gas flows are studied considering the
geometry of triply orthogonal spatial curves of congruences one related to the vortexlines and
_the other to their principal normals and binormals, .

Several physical and chemical phenomena invalidate the assumption of adiabatic flow
in many compressible flow problems. The inviseid non-conducting steady gas flows with -
energy addition by heat sources are termed diabatic and corresponding to heating processes
are thermodynamically reversible. The results from diabatic flow studies provide the basic
insight into heat addition effects, which is necessary. Hicks! formulated the fundamental
equations governing diabatic steady gas flows and attempted to study the geometry of
plane flows. Subsequently the geometric properties of spatial diabatic gas flows were
studied by us, considering the geometry of the streamline. The geometry of vortexline is
not, however, correlated with physical problems. Consequently, considering triply ortho-
gonal spatial curves of congruences formed by vortexlines, the prineipal normals and the
binormals, we have studied in this paper the kinematic and kinetic properties of diabatic
flows. . , :

.The basic conditions to be satisfied by the geometric parameters of triply orthogonal
curves are obtained. Defining velocity vector, the magnitude of vorticity is' determined
and analytical econditions are obtained, which are more elegant than those of
Suryanarayanad, The variation of flow parameters is studied at length.

FUNDAMENTAL EQUATIONS

The fundamental e(iuations govéming steady diabatic gas flow in the absence of
extraneous forces, in Crocco’s velocity vector field are given below in the usual notationt.
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where w, ¢, ¥, s, Vt, O'p,i T:, T and S are reducad veloeity vector, the heat content, the

- adiabatic exponent, the total pressure, the limiting velocity, the staornatlon enthalpy,

" the temperature a.nd specific entropy respectlvely .

GEOMETRIC RELATIONS

-5 > -
- Considering #, n and b as triply orthogonal unit tangent vectors to the curves of con-
gruences formed by the vortexlines, the principal normals a.nd thelr binormals respectively
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and denoting o vl s

as directional derivatives along these vectors, also
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selecting = as the posmon vector on a vortexlime we have the following geometrlc

results4,5 *
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| Usmg solenmdal property of rotatlonal vectors of these unit vectors we obtain the
’followxng ~
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“ These constltn‘be the basic conditionsto be satisfied by tmp}y orthogonal spataal curves of '
" eohgruences. Here (%, %', &), J and (r, o’; cr") are the curvatures, the mean curvature,
and the torsmns of the curves descnbed b

. KINEMATIC PB@PERZ‘:IES OE FLOWS

We study here some of the kmematlc and kme‘olo propertles of the flows descnbed o
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~ Let us define the velocity ve“e't:ér Wwas.
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where wg, w,, and ws are the resolved parts of the velocity components a.long a vortexlmo,
the principal normal and binormals respectively. - , :

Opera.tingl curl on (15) and equating to ? we "o.bta'in‘ )
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Relation (16) gives the magxﬁi;ﬁde of the vorticity and- (17) & (18) the condi-
tions to “be satisfied by the velocity. These results are more elegant than those of
Suryanarayana8,

Using solenoidal property the vérticify, wa obtain

If the normal congruences are mlmmal the vorticity in magmtude shall remain uni-
form along an individual vortexline.
- Making use of (15) in (1) we.obtain the continuity equation as
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This expresses the conservation of mass in a vortexline flow.

S >
Formmg the scalar products successively by ¢, m, b of (2) we obtain
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" From (21) we observe that the total pressure remains uniform albng a ’Vorte)ﬂin'é if either
the flow is complex-lamellar or the fluid is adiabatic. Also magnitude of the pressure dec-

* reases or increases in regions w? ; 1for Chapygin gas. The a.diéibatic case can be disoussed

-as & special case. For adiabatic Wga.s (22) and (23) yield
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This shows that the total pressure remains uniform é.lbng a vortexline.

Taking scalar prociu ¢t ;)f (8) by—tt ; and’ ?‘succeséi"vély we ‘obtain tite follov‘viixg,v |
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From equation (25) we observe that the spediﬁc entropy remains uniform along a vor-
texline if the stagnation enthalpy is uniform along the same direction.

i

Eliminating { from (26) and (27) we obtain-
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. which gives the temperature. o R v R /
Using (4) in (2) and eliminating p; we obtain the following
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Forming the scalar produet by ¢, =, b we have .
1 dp : 2Yw. dw ) 2‘),’@"&9‘ (30)
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These give the variation of pressure along a vortexline, pnnmpal norma.l a.nd bmormal The
pressure remains uniform along a binormal to the vortexline if the vortexlines coincide
with the streamlines, in this case additive heat has no effect along the normal oompon&nt of
acceleration field.

Operating curl (2) we obtain the followmg conditions
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These constitute the basic compatibility conditions to be satlsﬁed by a flow in vortexline
geometry. The adiabatic phenomenon can be discussed as a special case of this investiga-
tion.

RESULTS OBTAINED

(1) Geometric conditions to be satisfied by trlply orthoganal spatial curves of congru-
ences are obtained, assigning one of the curve as a vortexline. The magnitude vorticity
together with two basic results are obtained.

(2) Vorticity remains uniform along a vortexline, if the normal congruences are mini-
mal. : : ‘

(3) Conservation of mass is obtained in an elegant form.

(4) Total pressure remains uniform along vortexline if the flow is either complex-
. lamellar or fluid adiabatic. Analytic éxpression for temperature is obtamed

(5) Momentum equations are transformed into intrinsic form and the Dressure remains
- uniform for the flow in which the streamline and vortexlme coincide.

(6) Compatlblhty condltlons governing the flow are obtained in intrinsic form from
which adiabatic case can be deduced as & special case.
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