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Laminar flow of a visco-elastic fluid, characterised by three ooeﬂiments through rocta,ngula,r
channel under the influence of exponential pressure gradient has been investigated. Two interest-
ing cases have been discussed and analytical expressions have been obtained for the fluid velooity.

Liquids such as thick oils, pastes, paints, colloidal solutions and polymer solutions

" like polybutylene solutions are highly viscous. Their behaviour cannot be described by
the classical hydrodynamic stress-strain velocity relations. Generalising the stress-strain
velocity relations of classical hydrodynamics, the rheological behaviour of the
‘non-Newtonian liquids has been studied by Rivlin! and Riener?. This generalisation

~affected the linearity of the usual stress-strain velocity relations. The attention of the
authors3-6, in the field of fluid-dynamics, has been diverted towardsthe non-linear character -
of stress- stram velocity relations of non-Newtonian fluids. Visco-elastic fluids are parti-
cular class of non-Newtonian fluids which exhibit appreciable elastic behaviour and stress-
strain velocity relations are time dependent. Many authois™ 18 have studied the behaviour
of different visco-elastic fluids: Longilois & Rivlin!l have studied the steady state flow
of visco-elastic fluids through non-circular tubes. Rivlin® has discussed some exact solu-
tions of visco-elastic fluid flows. Jones & Walters?10 have investigated the oscillatory
motion of visco-elastic liquid, characterised by three coefficients, between two coaxial
cireular cylinders and concentric spheres. In view of such an interest in the subject, in the
present paper, the laminar flow of a visco-elastic fluid specified by three coefficients, one
coefficient of viscosity and two relaxation time constants, through rectangular channel
under the influence of exponential pressure gradient is investigated. Two interesting cases
have been discussed and analytical expressions for fluid velocity have been obtained.

EQUATIONS OF MOTION

The equations of motion together with stress-strain velocity relatlons of visco-elastic
fluid®10 are given by
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where 7*J and +'¢J denote the stress and deviatoric stress tensors of (i=1, 2, 3) the com-

ponents of velocity, g*/ are contravariant components of metric tensor, ¢;; the strain rate

of deformation tensor, A, and A, are relaxation , time constants (A, = A, > 0), p

coefficient of viscosity, p the pressure and p the fluid density. :
Operating (1 + X ':_f) on the equation of motion (4) and using equation (1) and (2)

. one obtaing
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FORMULATION OF THE PROBLEM

We shall investigate the flow of a visco-elastic fluid, described above, through & rect-
angular channel whose cross section is (z3—a2) (y2—b?) = 0, under the influsnce of
exponential pressure gradient. Choosing ~axis of the .channel along z-axis, the:
components of velocity are given by : R ST
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Using the above relations, the equation of motion (6) can be expressed as
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whf;re v is the kinematic coefficient: of viscosity. - .

From equatibns (8) to (‘10), it follows that —:’— (—g—g) is a function of ¢ ’only.‘ Since -

we have assumed the pressure gradient is exponential, we can write
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where & and m are real constants.
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In view of the equatlon (11) we ca.n express - :
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‘Usmg rela.tlons (11) and (12) in equatmn (10) one obtams the fo]_[owmg equatmn
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The problem is solved if we obtmn the solutlon of the differential equ.a.t:on, sub;ect to
the followmg boundary conditions : - :
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Since there is no slip of the fluid partlcles at the walls of the channel, the boundary
conditions (15) can be satisfied by takmg
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The remaining boundary eonditions (14), then becomes -
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Using the relationm(lfi) in (13) and taking
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The solution of the differential equation. (18) is given by
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Usmg the boundary conditions (17) in (19), we fmd th&t
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‘kFrom equations (19), (20) and (1:6), vé‘e can express
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- We shall now discuss two interesting cases df"very small and large values of £ 3

Case (1)
" When | | is very small we can write p; = -(_2_”_2%1)."_ approximately; ;
- Therefore, the expression (21) simplifies to”
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.which is the velocity of the fuid in the’ presetit ease.
Case (2) ‘ N .

| When | Q | is very large writing p,2 = — 2"1 2, the solution of the differential equa-
-~ tion (18) can be expressed a8 . ‘ i R '
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where 4’ and B’ are constants to be determined subject to the boundary conditions (17).
N Using fhg boundary conditions (17), one obtains
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~ On using equation (25) in (24) we obtain -
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From equations (16) and (26), it follows that
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For very large values of | 2 | , we can write p1 : ©, Therefore the expression (27)
simplifies to :
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| Using relation (28) in (12), we get
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which determines the fluid velocity in the present case.
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