LAMINAR FLOW OF A VISCO-ELASTIC FLUID THROUGH RECTANGULAR OHANNEL

K. Keshay Rao
Osmania University; Hyderabad

(Received 24 February 1969)

Abstract

Laminar flow of a visco-elastic fluid, characterised by three ooefficients, through rectangular channel under the influence of exponential pressure gradient has been investigated. Two interesting cases have been discussed and analytical expressions have been obtained for the fluid velocity.

Liquids such as thick oils, pastes, paints, colloidal solutions and polymer solutions like polybutylene solutions are highly visoous. Their behaviour cannot be described by the classical hydrodynamic stress-strain velocity relations. Generalising the stress-strain velocity relations of classical hydrodynamics, the rheological behaviour of the non-Newtonian liquids has been studied by Rivin ${ }^{1}$ and Riener ${ }^{2}$. This generalisation affected the linearity of the usual stress-strain velocity relations. The attention of the authors ${ }^{3-6}$, in the field of fluid-dynamics, has been diverted towards the non-linear character of stress-strain velocity relations of non-Newtonian fluids. Visco-elastic fluids are particular class of non-Newtonian fluids which exhibit appreciable elastic behaviour and stressstrain velocity relations are time dependent. Many authors ${ }^{7-13}$ have studied the behaviour of different visco-elastic fluids. Longilois \& Rivlin 11 have studied the steady state flow of visco-elastio fluids through non-circular tubes. Rivlin ${ }^{6}$ has discussed some exact solutions of visco-elastic fluid flows. Jones \& Walters ${ }^{9-10}$ have investigated the oscillatory motion of visco-elastic liquid, characterised by three coefficients, between two coaxial circular cylinders and concentric spheres. In view of such an interest in the subject, in the present paper, the laminar flow of a visco-elastic fluid specified by three coefficients, one coefficient of viscosity and two relaxation time constants, through rectangular channel under the influence of exponential prassure gradient is investigated. Two interesting cases have been discussed and analytical expressions for fluid velocity have been obtained.

EQUATIONS OF MOTION

The equations of motion together with stress-strain velocity relations of visco-elastic fluid ${ }^{9,10}$ are given by

$$
\begin{gather*}
\tau^{i j}=-p g^{j i}+\tau^{\prime j i} \tag{1}\\
\left(1+\lambda_{1} \frac{\partial}{\partial t}\right) \tau^{i i j}=2 \mu\left(1+\lambda_{2} \frac{\partial}{\partial t}\right) e^{j i}, j \tag{2}\\
e_{i j}=\frac{1}{2}\left(v_{, j}^{i}+v_{j, i}\right) \tag{3}\\
\rho\left(\frac{\partial v^{i}}{\partial t}+v_{, j}^{i} v_{j}\right)=\tau^{i j}, j \tag{4}\\
v_{, i}^{i}=0 \tag{5}
\end{gather*}
$$

where $\tau^{4 j}$ and $\tau^{i j}$ denote the stress and deviatoric stress tensors $v^{i}(i=1,2,3)$ the components of velocity, $g^{i j}$ are contravariant components of metric tensor, $e_{i j}$ the strain rate of deformation tensor, λ_{1} and λ_{2} are relaxation time constants ($\lambda_{1} \geqslant \lambda_{2} \geqslant 0$), μ coefficient of viscosity, p the pressure and ρ the fluid density.

Operating $\left(1+\lambda_{1} \frac{\partial}{\partial t}\right)$ on the equation of motion (4) and using equation (1) and (2) one obtains

$$
\begin{equation*}
\rho\left(1+\lambda_{1} \frac{\partial}{\partial t}\right)\left(\frac{\partial v^{i}}{\partial t}+v^{i}, j v_{j}\right)=-\left(1+\lambda_{1} \frac{\partial}{\partial t}\right) p,_{j} g^{i j}+2 \mu\left(1+\lambda_{2} \frac{\partial}{\partial t}\right) e^{i j},_{j} \tag{6}
\end{equation*}
$$

FORMULATION OF THE PROBEEM

We shall investigate the flow of a visco-elastic fluid, described above, through a rectangular channel whose cross section is $\left(x^{2}-a^{2}\right)\left(y^{2}-b^{2}\right)=0$, under the influenee of exponential pressure gradient. Choosing axis of the channel along z-axis, the components of velocity are given by

$$
\begin{equation*}
v_{1}=0 \quad v_{2}=0 \quad v_{3}=W(x, y, t) \tag{7}
\end{equation*}
$$

Using the above relations, the equation of motion (6) cen be expressed as

$$
\begin{align*}
& 0=-\frac{1}{\rho}\left(1+\lambda_{1} \frac{\partial}{\partial t}\right) \frac{\partial p}{\partial x} \tag{8}\\
& 0=-\frac{1}{\rho}\left(1+\lambda_{1} \frac{\partial}{\partial t}\right) \frac{\partial p}{\partial y} \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\left(1+\lambda_{1} \frac{\partial}{\partial t}\right) \frac{\partial W}{\partial t}=-\frac{1}{\rho}\left(1+\lambda_{1} \frac{\partial}{\partial t}\right) \frac{\partial p}{\partial z}+\nu\left(1+\lambda_{2} \frac{\partial}{\partial t}\right)\left(\frac{\partial^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial y^{2}}\right) \tag{10}
\end{equation*}
$$

where ν is the kinematic coefficient of viscosity.
From equations (8) to (10), it follows that $\frac{1}{\rho}\left(\frac{\partial p}{\partial z}\right)$ is a function of t only. Since we have assumed the pressure gradient is exponential, we can write

$$
\begin{equation*}
-\frac{1}{\rho} \frac{\partial p}{c z}=\alpha e^{-m^{2} t} \tag{11}
\end{equation*}
$$

where α and m are real constants.

In view of the equation (11) we can express

$$
\begin{equation*}
W(x, y, t)=f(x, y) e^{-m^{2} t} \tag{12}
\end{equation*}
$$

Using relations (11) and (12) in equation (10) one obtains the following equation

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\Omega^{2}\left(f+\alpha / m^{2}\right)=0 \tag{13}
\end{equation*}
$$

where

$$
\Omega^{2}=\frac{m^{2}}{4} \frac{\left(1-\lambda_{1} m^{2}\right)}{\left(1-\lambda_{2} m^{2}\right)}
$$

The problem is solved if we obtain the solution of the differential equation, subject to the following boundary conditions:

$$
\begin{align*}
& f(\pm a, y)=0 \tag{14}\\
& f(x, \pm b)=0 \tag{15}
\end{align*}
$$

Since there is no slip of the fluid particles at the walls of the channel, the boundary conditions (15) can be satisfied by taking

$$
\begin{equation*}
f(x, y)=\sum_{0}^{\infty} F(x) \cos \left(\frac{2 n+1}{2 b}\right) \pi y \tag{16}
\end{equation*}
$$

The remaining boundary conditions (14), then becomes

$$
\begin{equation*}
F(\pm a)=0 \tag{17}
\end{equation*}
$$

Using the relation (16) in (13) and taking

$$
\begin{gather*}
\alpha / m^{2}=\frac{4 \alpha}{m^{2}} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \cos \left(\frac{2 n+1}{2 b}\right) \pi y, \text { we obtain } \\
\frac{d^{2} F}{d x^{2}}-p_{1}^{2} F=-\frac{4 \Omega^{2} \alpha(-1)^{n}}{m^{2} \pi(2 n+1)} \tag{18}\\
p_{1}^{2}=\frac{(2 n+1)^{2}}{4 b^{2}} \pi^{2}-\Omega^{2}
\end{gather*}
$$

where
The solution of the differential equation (18) is given by

$$
\begin{equation*}
F(x)=A \cosh p_{1} x+B \sinh p_{1} x+\frac{4 \Omega^{2} \alpha(-1)^{n}}{m^{2} \pi p_{1}^{2}(2 n+1)} \tag{19}
\end{equation*}
$$

Using the boundary conditions (17) in (19), we find that

$$
\left.\begin{array}{l}
A=-\frac{4 \alpha \Omega^{2}(-1)^{n}}{m^{2} \pi p_{1}^{2}(2 n+1) \cosh p_{1} a} \tag{20}\\
B=0
\end{array}\right\}
$$

From equations (19), (20) and (16), we can express

$$
\begin{equation*}
f(x, y)=\frac{4 \Omega^{2} \alpha}{m^{2} \pi} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \frac{1}{p_{1}^{2}}\left(1-\frac{\cosh p_{1} x}{\cosh p_{1} a}\right) \cos \frac{(2 n+1) \pi y}{2 b} \tag{21}
\end{equation*}
$$

We shall now discuss two interesting cases of very small and large values of Ω :
Case (1)
When $|\Omega|$ is very small we can write $p_{1}=\frac{(2 n+1) \pi}{2 b}$ approximately.
Therefore, the expression (21) simplifies to
$f(x, y)=\frac{16 b^{2} \alpha \Omega^{2}}{m^{2} \pi^{3}} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}\left(1-\frac{\cosh \frac{\overline{2 n+1}}{\cosh } \pi x}{\frac{2 b}{2 b}+1} \pi a\right) \cos \frac{(2 n+1)}{2 b} \pi y$

From relation (12), it follows that
$W(x, y, t)=\frac{16 b^{2} \alpha \Omega^{2} e^{-m^{2} t}}{m^{2} \pi^{3}} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}\left(1-\frac{\cosh \frac{2 n+1}{2 b} \pi x}{\cosh \frac{2 n+1}{2 b} \pi a}\right)$

$$
\begin{equation*}
\cos \frac{(2 n+1)}{2 b} \pi y \tag{23}
\end{equation*}
$$

which is the velocity of the fluid in the present case.
Case (2) .
When $|\Omega|$ is very large writing $p_{1}^{2}=-p_{1}{ }^{2}$, the solution of the differential equation (18) can be expressed as

$$
\begin{equation*}
F(x)=d^{\prime} \cos p_{1}^{\prime} x+B^{\prime} \sin p_{1}^{\prime} x+\frac{4 \Omega^{2} \alpha(-1)^{n}+1}{m^{2} \pi p_{1}^{\prime 2}(2 n+1)} \tag{24}
\end{equation*}
$$

"here A^{\prime} and B^{\prime} are constants to be determined subject to the boundary conditions (17). Using the boundary conditions (17), one obtains

$$
\left.\begin{array}{l}
A^{\prime}=\frac{4 \Omega^{2} \alpha(-1)^{n}}{m^{2} \pi p_{1}^{22}(2 n+1) \cos p_{1}^{\prime} a} \tag{25}\\
B^{\prime}=0
\end{array}\right\}
$$

On using equation (25) in (24) we obtain

$$
\begin{equation*}
F(x)=\frac{4 \Omega^{2} \alpha}{m^{2} \pi} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \frac{1}{p_{1}^{\prime 2}}\left(\frac{\cos p_{1}^{\prime} x}{\cos p_{1}^{\prime} a}-1\right) \tag{26}
\end{equation*}
$$

From equations (16) and (26), it follows that

$$
\begin{equation*}
f(x, y)=\frac{4 \Omega^{2} \alpha}{n^{2} \pi} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} \frac{1}{p_{1}^{\prime 2}}\left(\frac{\cos p_{1}^{\prime} x}{\cos p_{1}^{\prime} a}-1\right) \cos \frac{(2 n+1)}{2 b} \pi y \tag{27}
\end{equation*}
$$

For very large values of $|\Omega|$, we can write $p_{1}{ }^{\prime}=\Omega$. Therefore the expression (27) simplifies to

$$
f(x, y)=\frac{4 \alpha}{m^{2} \pi} \sum_{\theta}^{\infty} \frac{(-1)^{n}}{(2 n+1)}\left(\frac{\cos \Omega x}{\cos \Omega a}-1\right) \cos \frac{(2 n+1)}{2 b} \pi_{y}
$$

Using relation (28) in (12), we get

$$
\begin{equation*}
W(x, y, t)=\frac{4 \alpha e^{-m^{2} t}}{m^{2} \pi} \sum_{0}^{\infty} \frac{(-1)^{n}}{(2 n+1)}\left(\frac{\cos \Omega x}{\cos \Omega a}-1\right) \cos \frac{(2 n+1)}{2 b} \pi y \tag{29}
\end{equation*}
$$

which determines the fluid velocity in the present case.

ACKNOWLEDGEMENT

I wish to express my thanks to Dr. A. Indrasena, Department of Mathematics, Osmania University for his guidance in the preparation of this paper.

REFERENCES

1. RivLint, R. S., Proc. Roy. Soc., 1939 (1948), 260,
2. Reinier, M., Quart. J. Mech. App. Math., 16 (1956), 1164.
3. JAIN, P. C. \& Gorl, S., ZAMM, B. 44 (1964), 135.
4. MqPMphe S. P., Ganita, 14 (1963), 99,
5. Whinmmin, M. N. I., 2AMM, B. 41 (106i, 44 .
6. Hivinw R. 8, J. Rat. Meeh. Anal., 5 1952, 179.
7. Daria, S. K. \& Awatw, Z, Math. Mech, 41 B (1981), 219.
8. Irdmisina, A., Ind. J. Pure App. Phy., 5 (1907), 304.

9. Joisms, J. B. \& Wanturs, T. S., ibid, 13 (1980), 83.
10. LorgLors, W. E. \& Mrvenr, R. S., Repert to Office Ordinanee Research, U.S. Army (Brown Univeraity), 1959.
11. Onopoxn, J. G., Quart. J. Mech. App. Math, 4 (1961), 271.
12. Warters, K, Quart. J, Mech. App. Math, 18 (1960), 235.
