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Abstract. An exact solution for the free convection flowp ast a vertical infinite 
porous plate in a rotating conducting fluid in the presence of a transverse applied 
magnetic field is attempted. The plate and the fluid are assumed to rotate in a 
solid body rotation. The effects of the Ekman number and the magnetic para- 
meter, on the flow characteristics are discussed. 

1. Introduction 

The rotating fluid is receiving the attention of many  worker^^*^'^'^ & because of their- 
applications in geophysical and cosmical sciences. It is very well known that in a 
rotating fluid near a plate Ekman layer exists wherein the viscous and coriolis forces 
are of the same order of magnitude. Recently the free convection flow past, a vertical 
infinite porous plate in a rotating fluid is discussed by Soundalgekar and Pops. The 
expressions for axial velocity and transverse velocity for the case of air and water are 
derived. The local skin friction shows a decrease with increase in the Ekman number 
for both air and water. They6 concluded with the results, that the rate of heat 
transfer is exactly equal to the Prandtl number of the fluid. The object of the pre- 
sent study is to examine the influence of an applied magnetic field which is transverse 
to the direction of the flow to the problem investigated by Soundalgekar and Pops. 
The study concentrates on the precise effect of applied magnetic field on the flow 
velocity and on temperature distribution. We feel that such a model is of importance 
in aero-dynamic cooling. 

2. Formulation of the Problem 

We consider a cartesian coordinate system rotating uniformly with a conducting fluid 
in a rigid state of rotation with angular velocity !2 about z axis taken positive in the 
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direction normal to the vertical plate which is assumed to be electrically non-conduct- 
ing. The plate is further assumed to coincide with z = 0 plane. The applied 
magnetic field is in the z direction which is transverse to the flow with a strength Bo. 
The fluid is incompressible viscous and conducting fluid. 

Since the plate is infinite extent and the flow is steady, the physical variables are 
functions of z only. We further assume that the magnetic Reynolds number is small 
as is the case, hence the induced magnetic and electric fields can be neglected. 

The governing equations of the problem are 

- d2u oB,2u 
du - ~ O V = V  - + g p ( T -  T , ) -  p ,  

"O & dz" 

with the boundary conditions 

u = O v = O T = T w a t z = O  7 
t (4) u ~ O V + O T - ~ T ,  a s z - t o o  J 

The equation of continuity under the above approximations yields 

which yield for constant suction 

In the above equations (u, v, w) are the components of velocity in (x, y, z) directions 
respectively. v is the kinematic viscosity, g is the acceleration due to gravity, P is the 
coefficient of volume expansion, T is the temperature of the fluid, T, is the ambient 
temperature. a is the electrical conductivity and P is the density of the fluid, wo is the 
constant suction velocity. If the flow of the fluid is slow, viscous dissipation effects 
can be neglected to make the problem linear. If one neglects viscous dissipation, the 
ohmic dissipation which is always less than the viscous dissipation can also be 
neglected. 
Let us introduce the following dimensionless quantities : 

woz z - -  u i v  T - T, 
.(I= - + - . @ =  T w - T w  

I 
v w 0 wo I I 

PCP p = --- vgrj  (Tw - Tm 1 I 
K , G =  i (7) 

I 
Ov E =  - oB:v I M = -  
w ", pw: J I 
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in Eqns. (1)-(3) and in boundary conditions (4 )  and obtain the following equations 

The boundary conditions are reduced to 

It is to be noted that Eqns. (1) and (2) are combined into one equation as Eqn. (8) 
through the definition of complex velocity U = u -t- iv. The numbers P ,  G ,  E and M 
are the dimensionless quantities which are the Prandil number, Grashof number the 
Ekman number and the magnetic parameter respectively of the problem. 
The solutions of Eqns. ( 8 )  and (9) under the boundary conditions (10) are 

@) = e - p z ,  

wherem, = 4 ( 1  + 41 + 4 ( 2 i ~ +  M I ) .  

we observe that in the limiting case as M -t 0 ,  the solutions of Soundalgekar and 
Pop6 will follow. 
Separating the real and imaginary part in Eqn. ( 1  l ) ,  we obtain 

G U - -- [{P (P - I )  - M I  e-A,. cos lir 
wo (P (P - 1) - MI' + 4E2 

+ 2E e-A,' sin hiz - (P ( P  - 1) - M) e-'' 1 
v 
-I- 

G [ Z E r - l , z  cos A,= 
w 0 { P  ( P  - 1 )  - Mj2  + 4E- 

- {p ( p  - 1) - M )  e-1.2 sin Air - 2E e - ' ~ ] .  
(14) 

Here 

A t  = {( + M )2 + 4E2 }' sin 012 

Knowing the velocity field, we can now calculate the skin friction at the plate which 
is given by 
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in dimensionless form 

The skin friction x and y directions respectively are of the type 

7 x 2  - -  ( P  (P - i )  - M )  ( P  -- A,) + 2EAi - - 
G {P (P - I) - MI2 + 4E2 9 

7 , ~  -= (2E (P - h,) - { P  (P - 1) - M }  hi) 
G {P (P - 1) - MI2 + 4Et 

The rate of heat transfer in dimensionless form is 

using Eqn. (i2), follows that g = P 
This means that the rate of heat transfer is equal to the Prandtl number of the 

fluid. It is noticed that the magnetic field has no influence on the local rate of heat 
transfer. This is due to the assumption that the Joule dissipation is neglected since 
viscous dissipation effects are neglected. 

3. Discussion and Results 

In Figs. 1-4, we computed the axial velocity and transverse velocities for the case of 
air and Mercury separately, when E = 0.2, 0.4 and for various values of M  = 0, 5 ,  10. 
The Prandtl number for air P = 0.71 and for mercury is 0.0249. In the case of air, 
we observe from Fig. 1, that the axial velocity decreases with increase in the rotation 
parameter in the absence of magnetic parameter. However even in the presence of 
magnetic parameter, it is observed that there is a further decrease in the axial velocity. 
Thus rotation and magnetic parameter acting separately or in a combined way has 
the same effect. 

In the case of transverse velocity from Fig 2, we observe that it is negative for 
small values of E and by suitable chosen values of M and E, it is possible that the 
transverse velocity becomes positive. 

In the case of mercury as the conducting fluid, it is noticed from Fig. 3 that with 
increase. in rotation alone or magnetic parameter alone or both together we find 
that the axial velocity increases which is entirely an opposite behaviour in compansion 
with air. Again the transverse velocity from Fig. 4 in case of mercury shows a 
negative tendency and with increase in M and E it shows a positive nature. 

The numerical values of skin friction T,~%/G and r,,/G are given in Table 1 and 
Table 2 separately for air and mercury. It is observed from Table 1 that r,, 
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Figure 1. Axial velocity (air). 
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Table 1. The numerical values of skin friction ( T % ~ / G )  for air and mercury 

AIR 
( P  = 0.7) 

Mercury 
(P = 0.0249) 

Table 2. The numerical values of skin friction (T,,/G) for air and mercury. 

AIR Mercury 
( P  = 0.7) (P = 0.0249) 

decreases with increase in the magnetic parameter and rotation parameter. However 
the decrease is rapid with increase in magnetic parameter than with the rotation - 
parameter. Rut in the case of component of skin friction as observed from Table 2. 
It is seen that increase in magnetic parameter decreases the skin friction while increase 
in the rotation parameter increases also the skin friction. The skin friction in y 
direction namely T y e  is negative since it is in the opposite direction to that of gravita- 
tiunal force. 

The above results are in confirmity with the results obtained by Soundalgekar and 
Pop6 in the non-magnetic case. 
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