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The extension of Rayleigh’s problem to magnetohydrodynamics with suction is considered
when the p’ate is non-magnetic and non-conducting. The suction velocity is assumed to be varying
as (time)~} Series solutions for velocity and skin-friction are obtained under the assumption

that the hydromagnetic parameter K is small. It is seen that the skin-friction increases with the
magnetic field. .

Considerable!—* work has been done in regard to Rayleigh’s problem in magnetohydro-
dynamics for conducting and non-condueting plates but in the absence of suction velocity.
Rossow! initiated. Rayleigh’s problem for non-condueting plate while Ludford? and
Chang & Yen3 havetaken the plate to be perfectly conducting in a viscous incompressible
and electrically conducting fluid in the presence of a uniform transverse magnetic field.
Drake? has exended it for a non-perfect gonductor and as a special case for an insulator.

In recent years the problem of boundary layer control has become very important in
the field of aerodynamics. Application of suction is widely used in these days to prevent
separation and to delay transition to turbulence which gives much larger maximum lift
and reduced drag. Therefore we have tried to study the effect of time-dependent suction
velocity on Rayleigh’s problem in magnetohydrodynamics of an infinite flat plate, assumed
to be non-magnetic and non-conducting.. The suction velocity is assumed to be:-of the
form c(»/t)1(2, where ¢ is & positive constant mean suction velocity, » the kinematio
viscosity and ¢ the time. The suction velocity is taken to be normal to the plate and direct-
ed towards it. '

The distribution of velocity is determined, in terms of known functions, by expansion
in series of the hydromagnetic parameter and it is shown how the velocity and the skin-
friction vary with and without the hydromagnetic interactions and with the variations in

the suction velocity. .

‘

BASIC EQUATIONS AND THEIR SOLUTION

We consider a two dimensional incompressible and electrically condueting viscous
fluid flow along an infinite porous flat plate, started impulsively into motion in its own plane
with a constant velocity in the presence of 2 uniform transverse magnetic field of strength
H,. The flowis assumed to be independent of the distance parallel to the plete and suciion
velocity normal to the plate is directed towards it and varies as (time)!/2. The s—axis is
taken along the plate and y—axis normal to it. The unsteady hydromagnetic boundary .
layer equations relevant to the problem are : ’ ‘
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where H,, ¢, v, p,pg and Py (= o p, v ) are the induced magnetic field in the direc-
tion of z—axis, the time, the kinematic viscosity, the density, the magnetic permeability
-and the magnetic Prandtl number respectively. o being the electrical conductivity of
the fluid. u, v are the velocity components parallel and perpendicular to the plate.
From eqn. (1) it is clear that v is a function of time only. Hence we consider v in - the

form of v = — v, (¢) = — ¢ (v/t)}’2, where ¢ is a real positive constant mean suction
velocity. ' ‘ , \

Substituting v = — ¢ (vftp2 and W = / H, (”ﬂlp)l/.z in eqns. (2) and (3), we get
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where W stands for the Alfve’n wave velocity. Equations (4) are to be solved subject to the
following conditions : '

,¢=(),W=0/ ) for ¢+ <0,

w="Up,W=0 at y =0 | (6)
) fort>0.

u—>0, W0 as § - oo .

For small values of K,

where K2 — ¢ ko H%/p v, we expand w and W in aséending_ 7
powers of K as follows ' )

L

u=Uy ¥ Evuy(n),
| n=0 ' (6)
W=U, £ E"V" W, (9) , IR

n-D J

w‘here 7 = y[2(w,*2

Now substituting (6) in eqns. (4) and comparing harmonic terms, neglecting coefficients
of K* and higher, we get : ‘
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and \

W?0‘*'2Pm ("'7+0)V.Wlo"‘,“‘2‘Pm WQ =/’;2Pmﬁlol z . :
Wy + 2 Pn (n+c) Wy— 4 Pn Wy=—2Puu, P T8
Wi+ 2Pminto Wy— 6 Pn Wy = —2Putiy )

....so on for other values.

where the dashes denote the differentiation with respect to 7.
The boundary conditions (5) reduce to

(@) =1 w0 =0 W, (=0 1 1
' o $(r=0,1,2..) 9)
u, (00) = 0, W, (00) > 0 , ‘ J
The solutions of eqns. (7) with the help of eqns. (8), satisfying’ the boundary condi-
tions (9), are ' h o
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where £ = v + ¢ and Hhy () is defined by, - -
i ) — n — 3 ut ) .
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@
_Bubstituting (10) 'in the first expression of (6), we get the eipression for the
* velocity. , ;
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In the absence of mghetic field the local skin-friction at the plate is given by
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'Co'mbining (11) and (12), we get
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since w; and ug are zero.
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CONCLUSION

We thus conclude that
(3) The skin-friction increases with the magnetic field. Further, as the magnetio

Prandtl number increases, so also does the effectiveness of the magnetic field
in increasing the skin-friction for fixed ¢. Also for fixed magnetic Prandtl
number the skin-friction increases slowly with K? when the suction velocity
increases. o

(#3) For fixed Py, the velocity decreases as 7 increases. Further this decrease in

velocity with % is substantially less and less as the suction velocity increases.

Also in the neighbourhood of the plate, the hydrodynamic velocity is greater-

than the hydromagnetic velocity but after a fixed point the reverse order takes
place. This point of intersection of these two velocities approaches the plate
as the suction veloecity increases. : '

REMARKS

The induced magnetic field in ab/-dire‘ction (H,) can very easily be calculated . with the
help of (6), (7) and (8) and finally substituting the value of W in

H, =W (p/pot
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