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This paper relates to the steady flow of an electrically conducting incompressible viscous .
fluid between two parallel coaxial rotating discs with a tranaverse magnetic field when the discs
are rotating in the same direction with the same velocity and there is a source at the centre.

In the present article the hydromagnetic source flow of a viscous, incompressible and
electrically conducting fluid between two parallel coaxial rotating discs has been analysed
An analysis of the velocity distribution has been made when there is a constant magnetic
field of strength By in a direction perpendicular to the dises. The analysis is limited to the
case of small magnetic Reynolds number. Similar problems of source flow for the non-
magnetic case have been recently studied by Kreith & Peubel’3, Khan3, Breiter.&
Pohlhausent and Geiger, Fara & Street® when the discs are rotating with the same velo-
cities and by Kreith & Viviand® when the two dises are rotating with different velocities.
Such type of analysis may find applications in design of viscosity pumps’8, rotating
heat exchangers® and air thrust bearing?®,

FUNDAMENTAL 'EQUATIONS‘AND BOUNDARY CONDITIONS

Let us take the axis of rotation of the two discs as z-axis andlet the two plates be situated

at z = 4 a. Consider the flow of an 1ncompress1ble fluid between two parallel rotating
discs with a source at the centre.

The governing hydromagnetic equations in cylindrical polar coordinates (r, 0, 2) are
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where u, v, w denote, respectively, the radml transverse and axial components of veloclty, J2ES

denotes the fluid pressure, B, the strength of the uniform axial magnetic field, o the electri-
cal conductivity, v the kinematic viscosity 1 of the fluid and pits density. From symmetry
~ of flow all quantities are independent of 8.

4

If the two dises rotate with angular veloclty ) a.nd the strength of source is @, the
vboundary condltlons-are . - I o
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Appropriate dimensionless variables are defined by the following relations :

r =l 2=y, =y, 9= [y w =l pe= P

In terms of these dimensionless variables, equa.tions (1) to (4) become
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and the boundary conditions become y
T 3
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where . ,
K = Quit [2m312, d= o/ e and M =o0B2)po. :
SOLUTION OF THE PROBLEM : '

Applying boundary layer approx1mahons, the above. wstem of equations reduces
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or _+T+ Py =0 o (15)

It is convenient to introduce the non-dimensional tangential velocity V relative to the
discs instead of v Whlch is the non—dlmensmnal tangentlal veloeity in the fixed system of

coordinates. Y

\ | V =v—r - (16)
One then obtains ’ ¢

u%f——-— V2+2¢VT+72 —{—w% :—%3-41— az —-Mu (1
“(zTV“LIJ“"u—(ZiI‘)“JFW%;: 0:; M(V—l—r) - (18) -
and the boundary conditions (11) then become
u(r, +d) =0 7' ) :
Vi, kd=0 L - (19)
vnzg=0 |

, Assuming that the velocity of the fluid relative to the dises is small so that the quadra-
tic terms are negligible (this condition is well satisfied for large radn) we obtain from
‘ equa,tlons (17) and (18) , - :
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b= g og M(V+r) . (21)

In these equations ap/ar does not depend upon z because of the boundary layer assump-
tion that the pressure does not depend on z. The unknown w does not appear and so it is

possxble to solve these equations separately; w can be determined from the equation
continuity.

Eliminating « from equation (20) with the he]p of equation (21), we get

v 2 o .
i 2M _d—zT + (M2 4+ »4) V = Fir) | g (22)
where ' »
=] 2(2L _ ) —m . "
| F(r)- [~2(ar' r) M.r] _} (23)
Solving equation (22) and applying the boundary conditi(/ms,A we get '
V = 4, cosh (x2) cos (B2) + B, sinh («2) sin (f2) 4 Fy (1) (28

u= A, qosh (x2) c0s (Bz) + By sinh (az) sin (B2) + Fy (r) (25)
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" where e
«=7""2c086/2, B= yY2sin g2
Y= (MB 4 4)12,. 0=tan-12/M
Ro=Fom RO=—gu{ne+r}
A, = (Fy X, —F, X)) | (X, X, — X, X;) .
B1=(F1X3"‘F2X1)/(X1X4'“‘X2X3)
A,:%{ (as—-ﬁz)—-M}Aﬁa,sBL
B = —‘%—{(«H—ﬁﬂ)—M}Bl—aﬁAl
and . o

X, = cosh (ad) cos (8d)
X, = sinh (ad) sin (8d)

n-p{e-m-n}x—eex

X, = ——%—{ (a’+ﬁ2)—M}'Xs+«ﬁX1

. ' The factor F(r) is determined by the condition that the mass flow between the dises
is constant for every cross-section r=constant. Let the strength of the source (measured by
volume) be Q. The flow through a surface r=constant extending between the discs is given -
by equation (12), i.e. : L

+4 ' A -
7. f wdz = K.
—d
Substituting the value of u and integrating, we get
. K?%(ARK1+Busf“F2d) (26)

where - , - ,
By = inh (ad)con (80) + B cosh.(ad) in (D) ./ o2+ )
K, ={« cosh (e sin (d) — B sinh (ad) cos (D) } /2 + )
Substituting the values of 4, and By in equation (26) and simplifying, we get
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where . o |
10, . 1 : ¥

KE; = “Bxs—_zll (F— ) — M i X4]/(X1X-4"‘X2HX3)

r [ . .
K = [3{@—m=n AR A 24

K, = F—;-{ (a2+ﬁz)—~M}Xs—a;3X4 ] [ (X, X4“Xzia)

- ! \ .
K= [«pt— ple+m—nlx]/@n-—xzx
From equation (27) we find the function F(r) | . :
where . ‘
=y
72

c, (KIK3+K2,K5),__2.},_2(K,K4+K,KG+ d)

1
For the non-xﬁagnetic case; 1.e. when M = 0, equations (24) and (25) feduce to 4

V = %_[Assinhzsinz {-B3coshzco§z—1] @9

= _Z—[ 4, cosh z o8 z — B;, sinh 2 sin 2 ] o '(éo)
where . '
A; = 2 sinh 'd'si;n- d/{Lr cosh 2d 4 gos?d}

B, =2 cosh d cos d‘/{cosh 2d+cos 2d } \

¢=K {eosh 2d 4 cos 2d} / {sinh 2dfsin2d}

These results agree with those obtained by Breiter & Pohlhausent if the latter results are
made dimensionless using our substitutions. ) » '
 DISCUSSION
Curves have been drawn showing the variation of non-dimensional radial velocity u
and the non-dimensional transverse velocity V relative to the discs with 2, The constants
appearing in the values of u and ¥ have been assumed to be '
M=05 d=1 K=3, r=10

From Fig. 1 it is'seen that the value of u is zero at the discs. It increases rapidly as the
non-dimensional distance from the plate increases from 0 to 0-2. It attains its greatest
value at z == +0-8. The value then decreases rapidly and attains almost zero value in -
» region midway between the two discs bounded by the planes z == 0-1.
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Fig. 2—Variation of » with s, PFig. 2—Variation of v with z.

The pattern of variation of u with 2 for the magnetic and non-magnetic cases is almost
the same. The effect. of magnetic field is to increase the velocity. This effect is greatest-ab
2 = 408

From Flg. 2 we see that the value of V is always negative. It is zero at the dises and
increases numerically as the non-dimensional distance from the dises increases from 0 to
0-4. The increase is then gradual tillit is almost constant in the region bounded by the
planes z == £ 0-2.

The effect of magnetic field is again to increase the veloclty and the pattern of variation
of V with z for the magnetic case is the same as for the non-megnetic case.
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