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Th§ motion of a power law fluid past a suddenly accelerated wall whiqh moves with a oonstant": '
velocity U (t) parallel to the wall has been considered for the gimilarity analysis. Recently this
problem has been discussed and two possible group of transformation have been used by T.Y. Nal.
In this paper the third possible transformation has been found. The variation of the wall
~velocity U () with time, ¢, has been worked out. o :
NOTATIONS

P

¢t = time
p = coefficient of viscosity  ©

v = coefficient of kinematic viscosity
U(t) = veloeity of the plate , )
<,-;== components of the deviatoric stress tensor
;= strain-rate components
km = consistency and flow behaviour indices
ay ay, dg, o3 By By By Bs l :

B = certain constanfs
4,B,b,m, a;, B; J '

¢, = independent similarity variables - '
p,g = certain constants in ternds of B;
my,my = constants in terms of B;

F,, = function of 7 ’

Fp = function of y

éqv= function of &

"The power law fluids have been found of great interest in Chemical Engineering and

Technology and their flow properties have been discussed in detail'-®. Such fluids satisfy-
the rheological equationS7. . -

where
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are the stram—ra.te components, (ul, Us, “3) are the velecity eomponents, <y are the |
‘components of the deviatoric stress tensor, & and n are usua.lly called the consistency a.nd
ﬁow-bebavmr indices respectively. . :

In thls note, we COIISIdel‘ the flow of such ﬂulds past a suddenly accelerated wall .
which moves with a constant velocity U-(¢) parallel .to the wall. We select a-axis along
the wall and y-axis perpendicular to the wall drawn into the fluid. It is the purpose of this
note to find the invatiants and the forms of ¥/ (f) for which similarity solutions exist.

~ Let [w(y,t), 0] denote the components of velocity at time ¢ at a distance y from the
plane (Fig. 1) Thus the boundary layer equations are reduced to
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The equation of continuity is satisfied from the forms of u and v, W héve selected - '_
From (3) and (4), ;— is a funetion of time or constant. We consider the case when\there -

- 1s & pressure gradlent and so the simplified equatlon can be Wmtten5 as
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Fig. 1—Variation of wall velocity with time.
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with the boundary conditions S
| 3 | y=0: u=U() for >0 w
T | ?/‘ — 0 u=0 for all values of t l (6)’
‘ y =0 u'=01 for t<0"‘ J

Na? has considered & semi-infinite body of non-Newtonian fluid, bounded on one side
by a flat plate, which is initially at rest. At-time t=0, the plateis set in motion parallel to
itself with velocity U (f). Thedesirable forms of U (f) have been found. in reference? for
which the similar solutions are possible. Two group transformations (i) =A% g y=A4% §
y =A%y and (1)t =34 B byy = ePdy, u = ePsd 5 are selected where a;, ¢ =1,

2,%B85,j=123 4 and b are certain constants. It has been shown that for similar
solutions, the wall velocity must vary as (3) U () = oy ¥, (i5) U (t) =g e [(n-+1)/(n—1)]gt
respectively where ¢;, ¢y, m, # and g are constants.

Two possible cases have been found by Yen Nat and’i;h‘ird has been found in this note.
It has been shown here that case I of Na? isa particularcase of the present note. Case IL
of Nat is also obtainable from the third case. s : S

‘ - SOLUTION OF THE PROBLEM
Case (3) A -
/ One para.metér group of transfdrﬁlation 1s chosen in the following form
o .o oy @y .
t=A +B(4—-1),y=4y, u=4u ‘ n

where ay, a3, a3, 4 and B dfe certain constants. Substitﬁting from (N into (5), equating .
the powers of 4 on both sides and defining m and b by ’

oo,
aB,b 2

"’ a " e Ty @
we get the following relations between b and m
b= 1+(n=1)m .
- adl ' )
From (7), we easily find that
o y__ _ _:L
G+BY T+ BP (10)
“. g ‘ ,
) (t+B)™ (t+B)m ) 1)
Thus the absolute \invariapts\are ' - '
; ) _ o |
MTTEFR O FA =D (1) (12)

\Fm(n)——«(—————“t_:B)m - (18)
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where m is an a.rbxtrary constant. Substxtutmg ( 12) and (13) into (5), we get
- n—-l 4 .

which is equation 7 ‘of Nal.

Thus for the simila:ity solutions, the wall velocity is

| U@ =aG+B)»
since the reduced boundary conditionsare I
p =0 me. 01 “for. t>=0 ' .
S = ,szz 0 for all valués oft b 4,(;16)

'n/O‘F,,,_o for t< ¢ j

For m O and nst1, this reduces to solutlons of erd" and Wells®, For B=0, we get
case- I of Nal and heating starts at time, ¢=0. Thus case I of Nal isa pamcula.r cage of
the present discussion. Replacing B by 4, mby o, Fm (q) by F’ (9), we get the case I of
Nande°, ‘ T ’

C'ase (@'i)

™~

. The second group of transformiations are

ht ﬁlb- y=“eBby,u_eﬁsb_ E . (17) .

substituting (17) into (5), we get the similar results as in case I of Na. Infact the above
 transformations are particular forms of =A@ Tete.of Nal, . .

Case (i) LT
The following transformations are selected -

p——

b_ T Beb "Bl B
=% 4 p, g =P, w=HG
substltutmg (18) into (5) and equatmg»the ‘«powers of e’* on both sxdes, we get

3a—nﬂa—ﬂa(%+1)+ﬁ - (19) .

' Forthe N ewtonian. fluid, n=1, we'get, ﬁz 0 if £=0. In this case the absolute invariants
are found as in Na® viz., ’ ,
-
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P U )= - @
Lfl‘ims the equation (5) frem (22) gives
‘ o3F .
| Tyﬁ g = (23)
which is equation 12 of Na? :
If n#l, we get from (19)
\ B —D+B=(m+1) B
or, Bty 1o (w1 put
| n—1 1 ,
or, my=Tlam DL (24
where -~ my = Beff L
For B= 0, we get case I of Nat and the absolute invariants are. .
_ ¥ .
. = (25)
g (&) — M e
10 = T Oie — it 0
wheo  g¢=RlA @
and from (25), (26) and (B), we get
: @1 - ’
d(ldG| d6, 46, ntl
(1% G) rehE —em—o (%)
which is equation 18 of Nat
. vy $(ot1) :
Replacing Gy (6) by F' () , (n=1) by m we. get case II of Nanda (reference
2, eqn. 21). ‘
. CONCLUSION

The transformation groups discussed by Bird et al? are the particular cases of case (i),
eqn. (18). For B; = 8, we get case I of reference 7 and case (i7) of the present note. For .
8 = 0, we get case II of reference 1, For B, # 0 and 8 # 0, it is congluded after caloulations

~ that the absolute invariants cannot be found.
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