APPLICATION OF GROUP THEORY TO THE SIMILARITY SOLUTIONS OF THE POWER LAW FLUIDS FLOW PAST A SUDDENLY ACCELERATING PLATE

KRISHNA LAL

Banaras Hindu University, Varanasi

(Received 3 March 1969)

The motion of a power law fluid past a suddenly accelerated wall which moves with a constant velocity U (t) parallel to the wall has been considered for the similarity analysis. Recently this problem has been discussed and two possible group of transformation have been used by T.Y. Na¹. In this paper the third possible transformation has been found. The variation of the wall velocity U (t) with time, t, has been worked out.

NOTATIONS

t = time

 $\mu = \text{coefficient of viscosity}$

v = coefficient of kinematic viscosity

U(t) = velocity of the plate

 $\langle ij =$ components of the deviatoric stress tensor

 $e_{ij} = \text{strain-rate components}$

k,n = consistency and flow behaviour indices

$$\left. \begin{array}{l} a, a_1, a_2, a_3, \beta, \beta_1 \beta_2, \beta_3 \\ A, B, b, m, a_i, \beta_i \end{array} \right\} = \text{certain constants}$$

 $\xi, \eta = \text{independent similarity variables}$

 $p,q = \text{certain constants in terms of } \beta_i$

 $m_1, m_2 = \text{constants in terms of } \beta_i$

 $F_m = \text{function of } \eta$

 $F_p = \text{function of } y$

 $\dot{G}_q = \text{function of } \xi$

The power law fluids have been found of great interest in Chemical Engineering and Technology and their flow properties have been discussed in detail^{1.5}. Such fluids satisfy the rheological equation^{6.7}.

$$\langle ij = k \mid \sum_{l=1}^{3} \sum_{m=1}^{3} e_{lm} e_{ml} \mid \frac{\frac{n-1}{2}}{e_{ij}}$$
 (1)

where

$$e_{ij} = \frac{\partial u_i}{x_j} + \frac{\partial u_j}{\partial x_i} \tag{2}$$

are the strain-rate components, (u_1, u_2, u_3) are the velocity components, $\langle ij \rangle$ are the components of the deviatoric stress tensor, k and n are usually called the consistency and flow-behavior indices respectively.

In this note, we consider the flow of such fluids past a suddenly accelerated wall which moves with a constant velocity U (t) parallel to the wall. We select x-axis along the wall and y-axis perpendicular to the wall drawn into the fluid. It is the purpose of this note to find the invatiants and the forms of U (t) for which similarity solutions exist. Let [u(y,t),0] denote the components of velocity at time t at a distance y from the plane. (Fig. 1) Thus the boundary layer equations are reduced to

$$\rho \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x} + \mu \frac{\partial}{\partial y} \left[\left| \frac{\partial u}{\partial y} \right|^{n-1} \frac{\partial u}{\partial y} \right]$$
(3)

$$0 = -\frac{\partial P}{\partial y} \tag{4}$$

The equation of continuity is satisfied from the forms of u and v, we have selected From (3) and (4), $\frac{\partial p}{\partial x}$ is a function of time or constant. We consider the case when there is a pressure gradient and so the simplified equation can be written⁵ as

$$\frac{\partial u}{\partial t} = \nu \frac{\partial}{\partial y} \left(\left| \frac{\partial u}{\partial y} \right|^{n-1} \frac{\partial u}{\partial y} \right)$$
 (5)

Fig. 1—Variation of wall velocity with time.

with the boundary conditions

$$y = 0 : u = U(t) \text{ for } t \ge 0$$

$$y = \infty : u = 0 \text{ for all values of } t$$

$$y \ge 0 : u = 0 \text{ for } t < 0$$
(6)

Na¹ has considered a semi-infinite body of non-Newtonian fluid, bounded on one side by a flat plate, which is initially at rest. At time t=0, the plate is set in motion parallel to itself with velocity U (t). The desirable forms of U (t) have been found in reference? for which the similar solutions are possible. Two group transformations (i) $t=A^{a_1}$, $y=A^{a_2}$, $y=A^{a_2}$, $y=A^{a_2}$, $y=A^{a_3}$, $y=A^{a_4}$, $y=A^{a_4}$, $y=A^{a_5}$, y=

Two possible cases have been found by Yen Na¹ and third has been found in this note. It has been shown here that case I of Na¹ is a particular case of the present note. Case II of Na¹ is also obtainable from the third case.

SOLUTION OF THE PROBLEM

Case (i)

· One parameter group of transformation is chosen in the following form

$$t = A^{1} \bar{t} + B(A^{1} - 1), y = A^{2} \bar{y}, u = A^{3} \bar{u}$$
 (7)

where a_1 , a_3 , a_3 , A and B are certain constants. Substituting from (7) into (5), equating the powers of A on both sides and defining m and b by

$$m = \frac{\alpha_3}{\alpha_1} , b = \frac{\alpha_2}{\alpha_1}$$
 (8)

we get the following relations between b and m

$$b = \frac{1 + (n - 1)m}{n + 1} \tag{9}$$

From (7), we easily find that

$$\frac{y}{(t+B)^b} = \frac{y}{(\overline{t}+B)^b} \tag{10}$$

$$\frac{u}{(t+B)^m} = \frac{\bar{u}}{(\bar{t}+B)^m} \tag{11}$$

Thus the absolute invariants are

$$\eta = \frac{y}{(t+B)^{(1+m(n-1))/(n+1)}} \tag{12}$$

$$F_m(\eta) = \frac{u}{(t+B)^m} \tag{13}$$

where m is an arbitrary constant. Substituting (12) and (13) into (5), we get

$$\nu \frac{d}{d\eta} \left(\left| \frac{d\mathbf{F}_m}{d\eta} \right|^{n-1} \frac{d\mathbf{F}_m}{d\eta} \right) + \frac{1 + m(n-1)}{n+1} \eta \frac{d\mathbf{F}_m}{d\eta} - m \mathbf{F}_m = 0$$
 (14)

which is equation 7 of Na1.

Thus for the similarity solutions, the wall velocity is

$$U(t) = c_1 (t + B)^m (15)$$

since the reduced boundary conditions are

$$\eta = 0 \; ; F_m = c_1 \quad \text{for.} \; t \geqslant 0$$
 $\eta = \infty \; ; F_m = 0 \quad \text{for.} \; all \; \text{values of} \; t$
 $\eta \geqslant 0 \; ; F_m = 0 \quad \text{for.} \; t < 0$

For m=0 and $n\neq 1$, this reduces to solutions of Bird⁸ and Wells⁹. For B=0, we get case I of Na¹ and heating starts at time, t=0. Thus case I of Na¹ is a particular case of the present discussion. Replacing B by A, m by α , Fm (η) by F' (η), we get the case I of Nande¹⁰.

Case (ii)

. The second group of transformations are

$$t = e^{\beta_1} \bar{b}_{\bar{t}}, y = e^{\beta_2} \bar{b}_{\bar{y}}, u = e^{\beta_3} \bar{b}_{\bar{u}}$$
 (17)

substituting (17) into (5), we get the similar results as in case I of Na¹. In fact the above transformations are particular forms of $t=A^{a_1}$ \bar{t} etc. of Na¹.

Case (iii)

The following transformations are selected.

$$t = e^{\beta b} + \beta_1 b$$
, $y = e^{\beta_2 b} + \beta_3 b$ (18)

substituting (18) into (5) and equating the powers of eb on both sides, we get

$$\beta_3 = n \, \beta_3 - \beta_2 \, (n+1) + \beta \tag{19}$$

For the Newtonian fluid, n=1, we get $\beta_2=0$ if $\beta=0$. In this case the absolute invariants are found as in Na¹ viz.,

$$\frac{u}{e^{pt}} = \frac{u}{e^{pt}} \tag{20}$$

where

$$p = \beta_*/\beta_*$$

(21)

$$F_p(y) = \frac{u}{e^{pt}} \tag{22}$$

Thus the equation (5) from (22) gives

$$\frac{d^2 F_p}{dy^2} - \frac{p}{\nu} F_p = 0 \tag{23}$$

which is equation 12 of Na¹

If $n \neq 1$, we get from (19)

$$\beta_3 (n-1) + \beta = (n+1) \beta_2$$

or,
$$\frac{\beta_3}{\beta}(n-1)+1=(n+1)\beta_2/\beta$$

or,
$$m_2 = \frac{m_1 (n-1) + 1}{n+1} = \beta_2/\beta$$
 (24)

where $m_1 = \beta_3/\beta$

$$\xi = \frac{y}{e^{qt}} \tag{25}$$

$$Gq(\xi) = \frac{u}{\{(n+1)/(n-1)\}qt}$$
 (26)

where
$$q = \beta_2/\beta_3$$
 (27)

and from (25), (26) and (5), we get

$$\nu \frac{d}{d\xi} \left(\left| \frac{d G_q}{d\xi} \right|^{n-1} \frac{d G_q}{d\xi} \right) + q\xi \frac{d G_q}{d\xi} - \frac{n+1}{n-1} q G_q = 0$$
 (28)

which is equation 18 of Na1

Replacing G_q (f) by $F'(\eta)$, $\frac{q(n+1)}{(n-1)}$ by m we get case II of Nanda (reference 2, eqn. 21).

CONCLUSION

The transformation groups discussed by Bird *et al*⁷ are the particular cases of case (*iii*), eqn. (18). For $\beta_1 = 0$, we get case I of reference 7 and case (*ii*) of the present note. For $\beta = 0$, we get case II of reference 1. For β , $\neq 0$ and $\beta \neq 0$, it is concluded after calculations that the absolute invariants cannot be found.

REFERENCES

- 1. NA, T. Y., A.I.A.A. J., 8, No. 2 (1964), Tech. note, 378.
- 2. WILKINSON, W. L., "Non-Newtonian Fluids" (Pergamon Press), 1960.
 - 3. METZNEE, A. B., 'Advances in Chemical Engineering', Vol. 1 (Academic Press, New York) 1956.

Duv. Sot. & Top. 20, January 1970.

- 4. METERNE, A. B., "Handbook of Fluid Dynamics (McGraw Hill Book Co., New York), 1961.
- A RAPUR, J. N., J. Phys. Soc., Japan, 17 (1962), 1903. . . .
- 6. KAPUR, J. N., J. Phys. Soc., Japan, 18 (1963), 438.
- 7. Bird. R. B., Stewart W. E. & Lightwoot, E. N., Transport Phonomena (John Wiley and Sees, New York) 1900.

Line of the second

errought in a Combination of the second

- 8. Bind, R. B., Amer, Inst. Chem. Engre., 5 (1958), 565.
- 9. Wells, C. S. Jr., A I A A J., 2 (1964), 951.
- 10. NANDA, R. S., J. Sej. Engg. Res., 7 (1963) 251.