APPLICATION OF GROUP THEORY TO THE SIMILARITY SOLUTIONS OF THE POWER LAW FLUIDS FLOW PAST A SUDDENLY ACCELERATING PLATE

Krishina Lal
Banaras Hindu University, Varanasi

(Received 3 March 1969)
The motion of a power law fluid past a suddenly accelerated wall which moves with a constant velocity $U(t)$ parallel to the wall has been considered for the similarity analysis. Recently this problem has been discussed and two possible group of transformation have been used by T.Y. Na ${ }^{1}$. In this paper the third possible transformation has been found. The variation of the wall velocity $U(t)$ with time, t, has been worked out.

NOTATIONS

$$
t=\text { time }
$$

$\mu=$ coefficient of viscosity
$v=$ coefficient of kinematic viscosity
$U(t)=$ velocity of the plate
$<_{i j}=$ components of the deviatoric stress tensor
$e_{i j}=$ strain-rate components
$k, n=$ consistency and flow behaviour indices
$\left.\begin{array}{l}a, a_{1}, a_{2}, a_{3}, \beta, \beta_{1} \beta_{2}, \beta_{3} \\ A, B, b, m, a_{i}, \beta_{i}\end{array}\right\}=$ certain constants
$\xi, \eta=$ independent similarity variables
$p, q=$ certain constants in terms of β_{i}
$m_{1}, m_{2}=$ constants in terms of $\boldsymbol{\beta}_{\boldsymbol{i}}$
$\boldsymbol{F}_{\boldsymbol{m}}=$ function of $\boldsymbol{\eta}$
$F_{p}=$ function of y
$\dot{G}_{q}=$ function of ξ
The power law fluids have been found of great interest in Chemical Engineering and Technology and their flow properties have been discussed in detaill${ }^{1 \cdot 5}$. Such fluids satisfy the rheological equation ${ }^{6-7}$.

$$
\begin{equation*}
<_{i j}=k\left|\sum_{l=1}^{3} \sum_{m=1}^{3} e_{l m} e_{m l}\right|^{\frac{n-1}{2}} e_{i j} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{i j}=\frac{\partial u_{i}}{x_{j}}+\frac{\partial u_{j}}{\partial x_{i}} \tag{2}
\end{equation*}
$$

are the strain-rate components, $\left(u_{1}, u_{2}, u_{3}\right)$ are the velocity components, $<_{i j}$ are the components of the deviatoric stress tensor, k and n are usually called the consistency and flow-behavior indices respectively.

In this note, we consider the flow of such fluids past a suddenly accelerated wall which moves with a constant velocity $U(t)$ parallel to the wall. We select x-axis along the wall and y-axis perpendicular to the wall drawn into the fluid. It is the purpose of this note to find the invatiants and the forms of $\theta(t)$ for which similarity solutions exist. Let $[u(y, t), 0]$ denote the components of velocity at time t at a distance y from the plane. (Fig. 1) Thus the boundary layer equations are reduced to

$$
\begin{gather*}
\rho \frac{\partial u}{\partial t}=-\frac{\partial p}{\partial x}+\mu \frac{\partial}{\partial y}\left[\left|\frac{\partial u}{\partial y}\right|^{n-1} \frac{\partial u}{\partial y}\right] \tag{3}\\
0=-\frac{\partial p}{\partial y} \tag{4}
\end{gather*}
$$

The equation of continuity is satisfied from the forms of u and v, we have selected From (3) and (4), $\frac{\partial P}{\partial x}$ is a function of time or constant. We consider the case when there is a pressure gradient and so the simplified equation can be written ${ }^{5}$ as

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\nu \frac{\partial}{\partial y}\left(\left|\frac{\partial u}{\partial y}\right|^{n-1} \frac{\partial u}{\partial y}\right) \tag{5}
\end{equation*}
$$

Fig. 1-Variation of wall velocity with time.
with the boundary conditions

$$
\left.\begin{array}{ll}
y=0: u=U(t) & \text { for } t \geqslant 0 \tag{6}\\
y=\infty: u=0 & \text { for all values of } t \\
y \geqslant 0: u=0 & \text { for } t<0
\end{array}\right\}
$$

Na^{1} has considered a semi-infinite body of non-Newtonian fluid, bounded on one side by a flat plate, which is initially at rest. At time $t=0$, the plate is set in motion parallel to itself with velocity $U(t)$. The desirable forms of $U(t)$ have been found in reference? for which the similar solutions are possible. Two group transformations (i) $t=A^{\alpha_{1}} \bar{t}, y=A^{a_{2}} \bar{y}$ $u=A^{a_{3}} \bar{u}$ and (ii) $t=\bar{t}+\beta_{1} b, y=e^{\beta_{2} b} \bar{y}, u=e^{\beta_{s} b} \bar{u}$ are selected where $a_{i}, i=1$, 2,$3 ; \beta_{j}, j=1,2,3 ; A$ and b are certain constants. It has been shown that for similar solutions, the wall velocity must vary as (i) $U(t)=c_{1} t^{m}$; (ii) $U(t)=c_{2} e[(n+1) /(n-1)] g t$ respectively where c_{1}, c_{2}, m, n and q are constants.

Two possible cases have been found by Yen Na^{1} and third has been found in this note. It has been shown here that case I of Na^{1} is a particular case of the present note. Case II of Na^{1} is also obtainable from the third case.

SOLUTION OF THE PROBLEM

Case (i)

- One parameter group of transformation is chosen in the following form

$$
\begin{equation*}
t=\stackrel{\alpha_{1}}{A^{1}} \bar{t}+B\left(\stackrel{\alpha_{1}}{A}-1\right), y=\stackrel{\alpha^{2}}{A^{2}}, u=A^{\alpha_{3}} \bar{u} \tag{7}
\end{equation*}
$$

where a_{1}, a_{2}, a_{3}, A and B are certain constants. Substituting from (7) into (5), equating the powers of A on both sides and defining m and b by

$$
\begin{equation*}
m=\frac{a_{3}}{a_{1}}, b=\frac{a_{2}}{a_{1}} \tag{8}
\end{equation*}
$$

we get the following relations between b and m

$$
\begin{equation*}
b=\frac{1+(n-1) m}{n+1} \tag{9}
\end{equation*}
$$

From (7), we easily find that

$$
\begin{align*}
& \frac{y}{(t+B)^{b}}=\frac{\bar{y}}{(\bar{t}+B)^{b}} \tag{10}\\
& \frac{u}{(t+B)^{m}}=\frac{\bar{u}}{(\bar{t}+B)^{m}} \tag{11}
\end{align*}
$$

Thus the absolute invariants are

$$
\begin{gather*}
\eta=\frac{y}{(t+B)^{[1+m(n-1)] /(n+1)}} \tag{12}\\
F_{m}(\eta)=\frac{u}{(t+B)^{m}} \tag{13}
\end{gather*}
$$

where m is an arbitrary constant. Substituting (12) and (13) into (5), we get

$$
\begin{equation*}
\nu \frac{d}{d \eta}\left(\left|\frac{d F_{m}}{d \eta}\right|^{n-1} \frac{d \mathrm{~F}_{m}}{d \eta}\right)+\frac{1+m(n-1)}{n+1} \eta \frac{d F_{m}}{d \eta}-m F_{m}=0 \tag{14}
\end{equation*}
$$

which is equation 7 of Na^{1}.
Thus for the similarity solutions, the wall velocity is

$$
\begin{equation*}
U(t)=c_{1}(t+B)^{m} \tag{15}
\end{equation*}
$$

since the reduced boundary conditions are

$$
\left.\begin{array}{ll}
\eta=0 ; F_{m}=c_{1} & \text { for } t \geqslant 0 \tag{16}\\
\eta=\infty ; F_{m}=0 & \text { for all values of } t \\
\eta \geqslant 0 ; F_{m}=0 & \text { for } t<0
\end{array}\right\}
$$

For $m=0$ and $n \neq 1$, this reduces to solutions of Bird ${ }^{8}$ and Wells ${ }^{8}$. For $B=0$, we get case I of Nal and heating starts at time, $t=0$. Thus case I of Na^{1} is a particular case of the present discussion. Replacing B by A, m by $\alpha, F m(\eta)$ by $F^{\prime}(\eta)$, we get the case I of Nande ${ }^{10}$.

Case (ii)

- The second group of transfomations are

$$
\begin{equation*}
t=e^{\beta_{1} b_{\bar{t}}}, y=e^{\beta_{2} b} \bar{y}, u=e^{\beta_{8} b} \bar{u} \tag{17}
\end{equation*}
$$

substituting (17) into (5), we get the similar results as in case I of Na^{2}. In fact the above transformations are particular forms of $t=A^{a_{1}} \bar{t}$ ete. of Na^{1}.

Case (iii)

The following transformations are selected.

$$
\begin{equation*}
t=e^{\beta b_{\bar{t}}}+\beta_{1} b, y=e^{\beta_{2} b_{\bar{y}}}, u=e^{\beta_{3} b_{\bar{u}}} \tag{18}
\end{equation*}
$$

substituting (18) into (5) and equating the powers of e^{b} on both sides, we get

$$
\begin{equation*}
\beta_{3}=n \beta_{3}-\beta_{2}(n+1)+\beta \tag{19}
\end{equation*}
$$

For the Newtonian fluid, $n=1$, we got $\beta_{2}=0$ if $\beta=0$. In this case the absolute invariants are found as in Na^{1} viz.,

$$
\begin{equation*}
\frac{u}{e^{p^{t}}}=\frac{\bar{u}}{e^{p_{t}}} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\beta_{z} / \beta_{1} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
F_{p}(y)=\frac{u}{e^{p t}} \tag{22}
\end{equation*}
$$

Thus the equation (5) from (22) gives

$$
\begin{equation*}
\frac{\partial^{2} F_{p}}{d y^{2}}-\frac{p}{\nu} F_{p}=0 \tag{23}
\end{equation*}
$$

which is equation 12 of Na^{2}
If $n \neq 1$, we get from (19)

$$
\beta_{3}(n-1)+\beta=(n+1) \beta_{2}
$$

or,

$$
\begin{align*}
& \frac{\beta_{3}}{\beta}(n-1)+1=(n+1) \beta_{2} / \beta \\
& m_{2}=\frac{m_{1}(n-1)+1}{n+1}=\beta_{2} / \beta \tag{24}
\end{align*}
$$

where

$$
m_{1}=\beta_{3} / \beta
$$

For $\beta_{0} 0$, we get case II of Na^{1} and the absolute invariants are

$$
\begin{equation*}
\xi=\frac{y}{e^{2 t}} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
G q(\xi)=\frac{u}{e^{\{(n+1) /(n-1)\} q t}} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\beta_{2} / \beta_{3} \tag{27}
\end{equation*}
$$

and from (25), (26) and (5), we get

$$
\begin{equation*}
\nu \frac{d}{d \xi}\left(\left|\frac{d G_{q}}{d \xi}\right|^{n-1} \frac{d G_{q}}{d \xi}\right)+q \xi \frac{d G_{q}}{d \xi}-\frac{n+1}{n-1} q G_{q}=0 \tag{28}
\end{equation*}
$$

which is equation 18 of Na^{1}
Replacing $G_{q}(\xi)$ by $F^{\prime}(\eta), \frac{q(n+1)}{(n-1)}$ by m we get case II of Nanda (reference 2, eqn. 21).
CONCLUSION

The transformation groups discussed by Bird et al are the particular cases of case (iii), eqn. (18). For $\beta_{1}=\theta$, we get case I of reference 7 and case ($i i$) of the present note. For $\beta=0$, we get case II of reference 1. For $\beta, \neq 0$ and $\beta \neq 0$, it is consluded after calculations that the absolute invariants cannot be found.

RREERENCES

1. NA, T. X., A.I.A.A. J., 8, No. 2 (1964), Teeh. note, 378.
-2. Wixcrssons, W, L., "Non-Newtonian Fluids" (Pergamon Presb), 1960.
2. Mniaryr, A. B., 'Advances in Chemical Engineering', Vol. 1 (Academic Press, New York) 1956.

 New York) 1000.

3. Wims, $0,8, J_{r}, 4144 J, 2(1904), 061$.
4. NANDA, R. S., J. Set, Engg. Res., 7 (1808) 201.

Cr
A
$-4-x^{4}-\operatorname{rar}+8$
$4-4 \frac{4}{2}$

THE

$\frac{-2-2}{-2}$

