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TUnsteady transfer of heat and mass in a semi-infinite capillary-porous medium in dontact

/with well-stirred fluid has been considered in this paper. At the interface, we have assumed the

continuity of temperature and of heat flux while for mass transfer convective law has been

assumed. It is also assumed that a quantity of heat, proportional to the moisture transferred at

‘(tihe in&rfaoe, is produced within tho fluid., Some numerical results have been graphically
epioted. , .
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' NOMENCLATURE

= temperature

¢
@ = mass transfer potential
7 = time

®

= co-ordinatein the z-direction T

O == A , moisture diffusivity coefficient
Cn 70

Og == O%q;’a_’ heat diffusivity coefficient
A, = moisture conductivity coefficient
A; = heat conductivity coefficient
Cn, = specific mass capacity I
C, = specific heat capacity
~ 7p = density of porous skeleton
= specific heat of evaporation
e = coefficient of moisture (internal evaporation)
Soret, coefficient

I

am = mass transfer coefficient

h = heat produced per unit area per unit mass at the interface due to chemical
reaction ‘

L = width of the well-stirred fluid in contact with the porous medium

X = T non-dimensional #-coordinate
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St —t¢, .
T; = -+—2 , non‘dimensional temperature (¢ =1, 2)
to — bxo o
Op—0; T
0 =—" kn(r)n-dlm_ensmna.l mass transfer potential (¢ = 1, 2)

Oy — Oy

Ly = -%2— , Luikov Number
q
P Cn (69 — 630)

Kp = : Kossowich Nﬁrﬁber :
' Cy (o — o) > '
8, {tio — tap) ) /
Pn = —20 20 Pognov Number. . . :
(620 — 610) o :
P ) L ,
Fo = %— , Fourier number for heat transfer o
. Om L . :
Bip = o Biot number for masg transfer

H = asdefined in equation (19)
N = as defined in equation (20)

Ko, = as defined in equation (21) o
The subseripts ¢, m, 0, T and 2 stand respectively for heat transfer; mass transfer
the initial state, the well-stirred fluid and the porous medium. A I

. Luikov & Mikhailov! have discussed a number of problems of heat and mass transfer
under variety of boundary and initial conditions. In almost all the cases which they consi-
dered, the surrounding atmosphete has been taken to be at a constant temperature and mass

- transfer potential or at & temperature and mass transfer potential which are some known
functions of time. However the problems, where the surrounding medium is such that its
temperature and mass transfer potential no longer remain constant but vary by way of
their dependence on the interface conditions, need consideration., The motivation. for

_ studying such problems is found in their applicability in adsoiption and dehydration prob-
lems in chemical technology. These applications suggest a new type of boundary cendition
at the interface with which the solution of coupled equations of heat and mass transfer is

.presented here.

Although in the eontext of transpiration cooling and the drying problems, Kumar &
Narang? in an earlier work solved the system of heat and mass transfer equations along
with the equations of flow and energy of the fluid, the present problem of dehydration,
where the moisture removing fluid is considered so well-stirred that the temperature in it
appears only as a function of time, has not been formulated so far. In simple heat conduc-
tion, however, a number of problems regarding well-stirred fluids have been solveds.

Kumar? discussed ‘the case of finite hollow cylinder in contact with mass M of a well-
stirred fiuid at its outer surface, while the inner surface was assumed to be absorbing heat
flux which is sinusoidal along the length of the cylinder. Many other cases concerning well-
stirred fluids have been reviewed by Kumar® in his thesis on “Some Boundary Value
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"Problemsi in'Heat Flow”. Recently Ahu]aﬁ has discussed the ease of h@at tra.nsfer in. senn-
infinite slab in contact with mass M of the well-stirred fluid per unit ared of the. 8011& the.
heat capacity of which varies hnea.rly Wlth temperature ' _ G

i In the problem considered here, a unit area of the plane end of the caplllaxy pOrous; :
body (# > 0) remains in contact with a mass M of the well-stirred fluid for all times and.
a quantity of heat 4 per unit area per unit time is assumed to be produced at the interface -
for every unit quantity:of moisture transferred to it from within the porous body. As for'
the interface conditjons, the continuity of temperature and of heat flux has been assumed
while the mass transfer obeys a convective law. The solution of the problem has been
obtained by the use of Laplace Transform and some numerical results have been presented
gra.phlcally

STATEMENT OF THE PROBLEM:

Conmder a semi-infinite moist eaplllary-porous solid (# > 0) in contact Wlth mass M

per unit area of the well-stirred fluid. Initially, the porous sohd is at & constant teriperature
‘3 and moisture transfer potential 655, The fluid is also at a constant temperature and mass
transfer potential given by t,oand 6,4 respectively. At theinterface (z = 0) the temperature
and heat flux are assumed to be continuous, whereas the mass transfer follows the convec-
tive law, The fluid is assumed to be so W,ell-stirred that at any time the whole fluid is at a
temperature equal to that of the interface. A quantity of heat b per unit area per unit time
due to chemical reaction is assumed to be produced at the interface for every unit quantity
of moisture transferred from within the porous medium to the interface. Assuming further
that the mass transfer potential of the fluid remains constant for all times, let us determine
the distributions of temperature and mass transfer potentlal in the porous solid at any
time =

—

The differential equatlons governing the process together with initial and boundary )

conditions can be written as follows P v o

%“‘—“%z z tz + o 0”‘2 :? : ; . .(1)
:fz — ang '20 + ang5, | aZ; M‘/ | 2

@>0,r>0) | e
o ZZ -: ‘3;’0 } ety - Voh f - Ei;
B A
Moﬂ ?1- A _3f2_ + h.“mz (\0 - 010) ’ ' (7)
" Amg 3‘92 + Amg 8, ‘Z +om Go—0) =0 ,k \A (8)
fy = & . ' " )

@=0, >0
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The boundary condltlon )] represents the heat balance at the interface. The ﬁrst
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" term on the left represents the change in heat content of the fluid column per unit area per .

_ unit time. The first term on the right is the heat flux into the porous body whereas the
second term represents the quantity of heat produced at the interface due to the chemical

reaction of the moisture, transferred to the interface from within the porots medium, with -

the. surrouriding fluid. As pointed out in ‘the introduction this boundary condition is valid

only in the case when the fluid is well-mixed so that its temperature is a function of time .

only. If the fluid is not well-mixed then one has to consider the variation in temperature
with respect to space variable also. In such & case the problem becomes quite complicated
and an analytical solution is difficult to obtain. It is-with this idea that the above assump-
- tion of well-mixing has been introduced, Whmh leads to a restriction on the number By

namely Big > >1.

, The boundary condition (8) is-the moisture - balance at the interface. The first
term represents the moisture flux out of the porous medium due to the gradient
of moisture transfer potential while the second term is the moisture flux induced
by the temperature gradient. The third term represents the convective mois-
ture exchange due to the difference of moisture transfer potentials between the interface

and surrounding fluid. Lastly, the boundary condition (9) is the temperature contmmty

condition at the interface.
The equations (1)—(9) can be written in the non-dimensional form, as

eT 321’ \ 20, . ‘ ‘
00, 20, T, ‘ )
(X>0,Fo>0
T, = 0 y » : o (12)
-1 o : ) ‘ 14
S TR R
o, . of o :
a_F_‘l)_\, .___2_|. NH (1— @ ‘ (16)
20, aT, . |
— % 7X2:B@m(1=-»@2)_, - an

(X =0, Fo> 0)

, where the non-dimensional qua,ntltles like Lu, €, Ko, Pn ete. have been defined in the
‘nomenclature. In the above equations we have, also "~

=00 (19)
N = h“mz_(ozo 010)L

- Age (o — ta) ‘
= L Bip Ko, (20)
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b Cnmy = (O~ by) -

where . - - : “ Kol - - Gqé ) (tlo tzo) ’

ey

SOLUTI ON OF THE PROBLEM

Defining. the Lapla.ce transform Wlth respect to the vanable Fo as

-0 -

=9 X7 = jq: @&, Fo) T @
0 ' B

and applymg it to equatlons (10) : and (11) takmg into acoount the initial condltlons (12)
and (13), we obtain _ ,

~ 27,

M= Zx ,*‘ eKop@ @
= 420, @,
POy = Lu —57 nLuPn—vz-fA R (24)

Elmnnatmg 6, from the equations (23) and (24),. weﬁbtam 8 fourth order dlfferentlal
equation in Ty as e

dT p2~

@ T, 1 - |
—d-X—: -— R( 1 - —ZJ + fKOPn ) X2 + Lu 2“— 0 ’ (25)
The solution of (25) admissible to our problem is o ,
'\ —VEnX . o —apn X | '
Ta—A16 + dye (X >0) S @9
Substituting for T, in (23) we obtain the transformed mass transfer potential 8, as
— y f —pn X f—\/jo‘vaxl
0, = cKoi Al(l——vf)e | —I-Az(’l—.-_mf)e ) 27
| R - x> 0
where », and v, are given by the follqwing expressions : ,
¢ 4 ’ )
vl“‘z-%[(l—}- +eKoP% )—4\/(1—1- +cKoPn)—-Tu] (28)

/ — 5 3

—} [(1+ 4 eKoPn )+‘\/(1+m- +eKan) — m] @)

The arbitrary constants 4; and 4, may be determined. from the boundary conditions
(16)-(18) These conditions in terms of the transforms become

“pTl—l;:_-H dTa +NH(—§--'-—52) (30)
5, T, 1 .= .

p -
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The transformed solution (26) and (27) may now be combined with boundary condmons
(30)-(32) to give & set of equations for the. determination of the arbitrary constants 4,
and A;; which on solution gives:

r 1 1
" VF VR T ) <«/p+ﬁ> -
1 ‘ 1 33
4= 3 +"”p(«/p+«> (v’p+ﬂ) - @
o 1
_+7‘31 (vp + «) ('\/p-l—ﬂ! )
. 1 - 4
[ VB (VF+ o) (VBT A) |
Ay = {+ "a LN S 1. 18
ol | P(VP+a) (VEFB) |
1 L
| R Retv ey = ol B
where o ) , : : .
“*7{3;:"‘*“, Vi) -] R

1 | bé.ﬁ.. V b \® 4ba - A
g 2[ by (bx)n“ b ] o L (36)\
The quantmes 115 o'm eto. and by, b2 ote. ocourring in, equations (33) (36) are gwen by

the following expressions :
Big,

= e (1= ) + Bim “ o | L CUI
= e {2l +vpn}+avamm e !
=B o ©)
| B (“,,,f)"; Bl e
. { i E.'.a_(l;.i}%ﬂf? + 3 P} + Hy, Bz',,.’] - | (1) -
el p ) L )
g M= )‘;ov,(lw—y,) + ("'s“"”l)P“ o “y

- . ’ LI : B’lrm
b= Hopy L) B g (44
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‘ vlﬁ) (1— wﬁ) (’1 ’""'?) _4{, Bn { v ‘1 Hng) o v? (1 o "1 ) } ](45)

- eKo-

_ With the values of 4,, 4, found above, _T2 and 02 can be wntten as

R T e ey 3

-~ 1
T X’ P - =
&= (gc»ﬁ) [«_/p WEES vE Weral &

- e o _“__.'.a - .

+ FwrTT

b;(uwﬂ) p(\/p+m P(\/p—{—u) 4
‘3‘9

; ' . -
S B 1__ S U B « R ;‘;‘"'W—V‘X
+.> by (a—8) [ Vo+B o A/pta ] % j;l ~

6 TZ e e 7 (1 v )
() X SEPLVEWE vp oV ]X; wlh=ie

T T S 1 <X —EuX
R | ,
- Ko by (a—P) [P (\/p+ﬁ) P (\/p—l—oc) ] % }Z"ﬁj(}_f’:fja)?f; —l

R N R Rt
AT 1T -1 i py,
e \""", e ecaadind X Yad (1*""‘? a) e
| | by ( [Vﬁ +8 \/P-i-a] Z wEOUT

g=1

L e @ W)

. A.p’plying the ‘im}ersi'on tlzeoxem for E@l@e’e transform éﬁﬁh&;b}m;

: - ‘\ Y + 2] ' - o

§ ¢ (X, Fo) = 2mf¢(x » % clp R (¢8)
2 Y L R
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to the above expressions for T, (X,p) and 0, (X,p) we obtain the ﬁnai dlstnblmons for 2
the temperature T, and mass transfer poténtial @, as

¢

- wBX+BFo .y ‘
. L& F= B)fo[ atfo (2> +MFo)

__e#ij+a2Fogrfc( 2VjX

4 <a_m2 " [e”c( VT )(‘1“ - <)

1 v;ux—}-a Fo . (#6X ._q‘w
o+ = - erfc(zv__ +ocVFo

)
T _}}_e"i'ﬁx"'@% erfe (2”\5/{ + B\/Fo ) ]

b1<a ﬁ)z% [“ S ”f"(

g=1

= +om/1"o)

\/
jﬁX—f—BzFo vi X
~8¢ ’f(zf/% +pVET) ]

, - (X>0 (49)
N ,
S I g b.(a——ﬁ)Z'“ (=)

[vjﬁX+,3’Forf( v—_+ﬂ«/F ) ‘v,ax+u'o (2"‘50+M/Fo)] |
| 1 1

2 ’ -
s i S i) (-2 ()
+ E_ijuX-l—a.’Foerfc(
o

W +°‘\/""’)

-fﬁanm( V~—+ﬁ\/Fo )]
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" b ,
-1

- o1 N P via X -+ o® Fo v X
Ko b (e—P) Z Toi (1 — v ) [«x e . erfc (—-—»—-2 VFE+ o;\/Fo).

¥

 BX4PRo . (wE .
Be | | erfo»({v__ﬁ;;b_y_ﬁw/pq ) ]

y

=0  ©)

The distribution for the temperature T’y in the fluid can be obtained from (49) by
substituting X =0, 7 ) e

\

NUMERCIAL RESULTS AND DISCUSSION ¢
The values of the parameters chosen for the numerical work of the above problem
-~ were . . - ,

Lu =03 Y e=05 - , Ko =12

Pn= 05 ., Bin=100
The coirespbhding values of temperature T, have been plotted in Fig. 1 and 2.

In Fig. 1 we have plotted the temperature T, at the surface of the porous solid(i. e

at X =0). against non-dimensional time Fo for four different values of the number H
(H =025, H=0-5, H=0-75 and H = 1). At any time Fo, it is seen that the surface
temperature decreases with the increase in H. This may be explained on account of the
fact that, for a fixed value of heat content in a unit volume of the porous solid the increase

* in H results in & decreasein the heat content of the fluid in the column at unit area at the -
surface and hence the temperature at the interface decreases.

LWw=0.3 €
Ko'=1.2 P,
8im=10

0.3 Iy L A i st 0.2 i N Ko's-sl i N
0.0 2.0 o 60 5.0 100 0.0 2.0 %0 6.0 8.0 0.9
Fy N Fo
‘ Fig. 1—Variation of non-dimensional tempera- Fig. 2—Effect of Ko, on non-dimensional

ture at the porous bedy Isurface for temperature at the porous body

- different values of X, , surface,



_ Fig. 2 exhibits the effect of non-dimensional ‘number Koy, on the temperature

the porous body surface. It appears that with the jncrease in Ko, the surface temperature .

 goes on increasing. This is readily explained by the fact that Koy, being a non-dimepsional -
" heat source at the interface, the increase in the value of this number would naturally raise

the surface temperature of the porous-body. -
- ACENOWLEDGEMENTS = =

. The author is grateful to Dr. V. R. Thiruvenkatachar E.N.I. and Dr. 1 J. Kumar
for their valuable guidance. The author is also grateful to Dr. R. R. Aggarwal for- encou- -
ragement and the Qirectq;, Defence Science Laboratory for the permission to publish
~thispaper. ~ . C - o oo S
o REFERENCES 7
1. Lurkov, A. V. & Mixmairov Yu. A., “Theory of Energy & Mass 'Ttansfefi\";(aeérhg},mbn “Press, London),
C19es o LT S T e TR
2. Kumag I J. & Napawe, H. N. “Drying of a Capillary Porous Medium in Moving Air”, I J
‘ Mass Transfer, 9 (1966), 95. . e = s T
3. CaBspaw, H. 8. & Jarcag, J. C., “Heat Conduetion in Solids” 2nd Edition (Clarendon. Press, Oxford), -
1959, e s
4. Kvmas, L J., “Heat Flow in a Cylinder in Contact with Well-Stirred Fluid”, Def. Sei, J., 14, (1944), 99
5. Kumas, L J,, “Some Boundary Value Problems in Heat Flow™, Thesis, Delhi University, 1963.
6. Anusa, K. L. <Some Non-linear Problems in Heat Transfer”, Disseriation, University of Delhi, 1966,




