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nnsteady transfer of heat and mass in a semkinfinite capillary-porom medium in dontaot 
with well-stirred fluid has been oonsigered in this paper. Atithe interfaoe, we have twatmed the 
oontinuity of temperature and of heat flux while for mass transfer oonveotive law hsa been - aseumed. It is also aaeumed thata quantity of heat, propoionl to the moisture transferred a t  
the interfaoe, is pmduoed within the fluid. Some numerioal results have been graphioally 
depioted. 

I N O M E N C L A T U R E  

t = temperature 

8 = mass transfer potential 
T = time . 

t a = co-ordinate in the x.direction I 

h4 ag = - heat diffusivity cosfficient c, ye ' 
&,,, = moisture conductivity coefficient 

b 
/ 

& = heat conductivity coefficient 
a 

C, = specific mass capacity 

Cp = specific heat capacity 
Yg 3 density of porous skeleton 

p = specifia heat of evaporation 
e = coefficient of moisture (internal evaporation) 
g =& Soret coefficient 
a, = mass transfer coefficient 
h = heat produced per unit area per unit mass at the interface due to chemioal 

reaction 
L = width of the well-stirred fluid in contact with the porous medium 

5 x = - -  
I/ , non-dimensional x-coordinate 
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T i  = ti - 40 , non-dimensional temperature (i = 1, 2) 
t10 - t20 

0, - ei 
9 5= , non-dimensional mass transfer potential (i = 1, 2) 

4 0  - 010 
am & =  - , Luikov Number 
4 

Om (Om - *lo) , Kossowich Number Kt? = - c, @lo - t,) 
Pn = ('lo - ~ o s i o v  Number , 

i (020 - 010) 

, Fourier number for heat transfer Fo = - 
A2 

am L B;, = - , Biot number for mass transfer 
hnt 

* -  - .  

H = as defined in equation (19) 

N = as defined in equation (20) 

KO, = as defined in equation (21) . 

The subscriptsq, m, 0, 1 and 2 stand respectively for beak transfer, mass transfer 
the initial state, the well-stirred fluid and the porous medium. 

. . 

Luikov & Mikhailovl have discussed a number of problems of heat and mass transfer 
I 

under variety of boundary and initial conditions. In almost alLthe cases which they consi- 
dered, the surrounding atmosphere has been taken to be at a constant ternpexcdure &id mass 
transfer potential or at a temperature and mass transfer potential which are some known 
functions of time. However the problems, where the surrounding medium is such that its 
temperature and mass transfer potential no longer remain constant but vary by way of +. 

their dependence on the interface conditions, need consideration. The motivation for '' 
studying such problems is found in their applicability in adso9tion and dehydration prob- 
lems in chemical technology. These applications suggest a new t h e  of boundary mn&%ion 
at the interface with which the solution of coupled equations of heat and msss transfer is 
presented here. 

Although in the context of transpiration cooling and the drying problems, Kumar & 
Narangs in an earlier work solved the system of heat and mass transfer equations along 
with the equations of flow and energy of the fluid, the present problem of dehydration, 
where the moisture removing fluid is considered so well-stirred that the temperature in it 
appears only as a function of time, has not been formulated so far. In simple heat conduc- 
tion, however, a number of problems regarding well-stirred fluids have been solveds. 

Kumar4 discussed the case of finite hollow cylinder in contact with mass M of a well- " 
stirred fluid a t  its outer surface, while the inner surface was assumed to be absorbing heat i 

flux which is sinusoidal along the length of the cylinder. Many other oases concerning well- 
stirred fluids have been reviewed by Kumars in his thesis on "Some Boundary Value 



NABANG : Heat and M a s  TniZaafm in a Semi-in@&% Porsug Mediwn 51 

'~roblems in Heat Blow". Recently Ahujb6 has cfiscussed the a s e  of h& Or4erut -semi- 
infinite slab in contact with mass M of the meU-stinzed fluid per unit arei of the @Ed, tbe 
heat capacity of which varies linearly with temperature. J 

. . 
In the problem considered here, a unit &ea of the plane end of the o a g i h y  p r o w  

body (x > 0) remains in contact with a mass M ~f the well-stirred fluid for all times and 
a quantity of heat h per unit area per unit time is assumed to be produced a t  the interfsoe 
for every unit quantity of moisture transferred to it from within the porous bodgr. ks for' 
the interface conditions, the continuity of temperature and of heat flux- has been as,&raed 
while the mass tl~ansfe~ obeys 8 convective law. The solution of the problem, has been 
obtained by the use cif Laplace Transform and some numerical results have been presented 
graphically. . 

S T A T E M E N T  O F  T H E  P R O B L E N  

-. Consider a serni-idnite moist capilbry-porous solid (x Oj  in contact with mass N 
per unit area of the well-stirred fluid. Initially, the porous solid is a t  a constant temperature 
t ,  and moisture transfer potential O,,. The fluid is also at a conseant temperature and mass 
transfer potential given by t ,  and Bl0 respectively. At the interface (x = 0) the temperature 
and heat flux are assumed to be continuous, whereas the mass transfer follows the convec- 
tive law, The fluid is assumed to be so well-stirred that at any time the whole fluid is at a 
temperature equal to that of the interface. A quantity of heath per unit area pm unit time 
due to chemical reaction is assumed to be produced a t  the interface for every unit quantity 
of moisture transferred from within the porous uaedium to tb interface. Assuming further 
that the mass transfer potential of the fluid remains oonstant for all times, let us determine 
the distributions of temperature and mass transfer potential in the porous solid a t  any - 

time T. 
4 

The differential equations governing the process together with initial and boundary 
conditions can be written as follows : ' \ . 

at, - a2 t, EP 89, Q 
f - Cmz - , aT = a92 - am2 Cqz a~ 
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TJle boupdary condition (7) rejresents the heat balance at the interface. The first 
&rm on the left represents the change in heat content of the fluid column per unit area per . , 
unit time. The first term on the right is the heat flux into the porous body whereas the 
second term represents the quantity of heat produced at the interface due to the chemical 
reaction of the moisture, trinsferr~d to the interface from within the porous medium, with 
the surrouziding fluid. As pointed out in the introduction this boundary condition is vdid 
only in the case when the fluid is well-mixed so that its temperature is a function of time 
only. If the fluid is not well-mixed then one has to consider the variation in temperature 
with respect to space variable also. In such a case the problem becomes quite conlplicated 
and an andytical solution is diEcult to obtain. It is with this idea that the above assump- 
tion of well-mixing has been introduced, which leads to a restrjction on the number Biq 
namely Bi, > > 1. 

The boundary coliditiorl (8) is the moisture --balms at the interface. The first 
term, represents the moisture flux out of the porous medium due to the gradient 
of moisture transfer potential while the seco-nd term is the  moisture flux induced 
by the temperature gradient. The third term represents the convective mois- 
ture exohange due to the difference of moisture transfer potentials between the interface 
and surrounding fluid. Lastly, the boundary condition (9) is the temperature continuity 
oondition a t  the interface. 

The equgtions (1)-(9) can be written in the non-dimensional forin, as 

882 3T2 -- ax z = Bi, ( 1  - 0,) 
TI = T2 (18) 

(X = 0 , Fo > 0) 

where the non-dimensional quantities like Lu, e, KO, Pn etc. have been defined in ,the 
nomenclature. In the above equations we have, also 

a = &2 L 
MQB~ a!?* 

(19) 

A'= ham2, (020 - OI0) A 
b 2 '  (t10 - -20) 

s 

\ 

L= Bi, KO* (20) 
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where KO, = - h (0% - @st,) 
%a (tl0 - t20) (21) 

S O L U T f  ON OF T H E  PROBLEM' ' - 
Defbing the Laplace transform with re'spect to the variable 4'0 as 

. " 
%. 

- - - p F o  - 
p 9 (x, p) = -f p (x, pol e aye (22) - 

0 

and applying it to equations (10) and (111, iaking into account the initial conditions (12) 
and (13), we obtain 

- daT2 - 
pT2 = - - eKo p  Q8 d P  ("L) 
- d2%- - p a 2  = h -- -J;uPr. dX2 ax=' $ (24) 

Eliminating g2 from the equati~ns(23) and (24X we-sbtain a fourth ordw differential 
equation in 9% as 

The solution of (25) admissible to pur problem is 

- - ,/;-vl x - 4Fva If 
Ta = A1 e + A2 e (X > 0) (26) 

su&tituting for in (23) we obtain the transformed mass transfer potential g2 as . 
7 

- 1 @ a = - -  
- & v1x --dFva X 1 

~ K o  - b ~ ~ ( l - ~ : ) e  - 1 (27) 
tx > 0) 

where vl and v2 are given by the following expressions : 

The arbitrary constants Al and Aa may be determined from the boundary conditions 
(16)-(18). Thesa conditions in terms of the transforms bacome 
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Z - -  
- I  

- - --:; - PI-= *; ($9 ' 4 
Tho  trmsfonned solution (26) and (27) may now be combined with boundary conditions 
(30)-(32) to give a set 9f eqtaoti~w for +he deteminstioa of the arbitrary 6onstanfa dl 
and A,> whioh on soluhioa gives: 

1 

- 1 
, -  d l =  - +"l p (dl) + a )  ( Z / i )  + 8 )  

(33) 
. . bl 

1 

where 

The quantities rll, v, eto. w d  b,, Dp etc. mcurring in equations (33)-(36) &re given by 
the following expressions : 

, (1  - vag) ~1 (1 - Y?) 
h =  CKS 4- (va - PI) Pm (43) 

( .la - --s2 Bi, 
b, - H v, v, +x  (V? -. ,KO (4) 



- 
-- 

p - - T I  - -  - - -Vi;-vo' $ 
- *  - ,'go ' 4 (a--B) 

xA:fdcf~vj21 

jm  1 

- .  - - - - - - (Xp 0) - (47) 

lying the inversion t b ~ ~ e m  for &@me @enp,fofm &ibad by ' . 
- - --- - - - .  - 

Y f iao 
lrP9 - - -4 (x, FO) = ,+. Jii (x, P) 6 d* - - (48) 

. ' y z i o o  - - 
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to the above expressions for 2 (X,p) snd @$ (x,,) we obtain the final distajba%i&s- iar ' 
th temperature Tz and mass transfer potential 8, as 

v j  X - 
T, (X, Fo) = erfc ( + a 00 ) 

f 
/ 
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P 2 

C 1  1 - -* 
via X + Z Foe& 

€KO Jbl (a - B) 
1- 1 

tx > 01 (50) 

The distribution for the temperature TI in the fluid can be obtained from (49) by 
substikuting X =F 0. 

7 \ 

NUMERCLAL R E S U L T S  A N D  D I S C U S S I O N  I 
* 

The values of the parameters chosen for the numerical work of the abdve problem 
were 

LU = 0.3 7 E = 0.5 KO =; 1.2 . "  

The corresponding values of te&perature T2 have been plotted in Fig. 1 and 2. 

In Fig. 1 we have plotted the temperature T2 at the surface of the porous solid& e 
at X = 0) against non-dimensional time Po for /four different values of the number H 
(H = 0.25, H = 0.5, H = 0-75 and H = I). At any time Po, it  is seen that the surface 
temperature decreases with the increase in H. This may be explained on account of the 
fact that, for a fixed value of heat content in a unit volume of the porous solid the increase 
in H results in a decrease in the heat content of the fluid in the column a t  unit area a t  the 
surface and hence the temperature at  the interface deoreases. 

l u m O . 3  C r0 . f  
Ko=1.2 P " r O . 5  

0 .Y - 

Fig. 1-Variation of non-dimensional tempera- Fig. 2-EffM of KO& on non-dhn~nsiond , 
fure at he poroue body [surface for P fenipemture at the pmu8 body 
different values of #. surf&oe. 
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Rig. 2 exhibits the effect a£ non-GmeKsioaal number Kq, on the temperahlm 3'1 at ,C 

the'porpn& hodymrfaoe. It appear"j%bt+t with the ipcrease in KO,, the surface temperature "" 

gaes on inowsing. This is readily explained by the fact that KO,, being a non-diqeatr;ioaal 
heat source at  the interface, the increase in'the value of this number would naturhlly raise 
the surface temperature of the porous body. - - A 
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