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In thls pa,per, the problem of bendmg of an mltlally curved cylindrical block of oompresmble :
dielectric material is solved when a uniform surface charge is applied on the outer surface of the
block. It is observed that the surface charge applied to the outer surface does not effect the stress
distribution. The results for a material having a particular strain energy function have been
-discussed in detail. The results for a cylinder under uniform pressures are indicated.

Recently, Toupin' derived the fundamental equations for & compress1ble dlelectrlc
material. Eringen23 reoriented the topic - using the variational technique and solved
the problems of pure shear of a block and uniform extension of a circular cylinder of in-
compressible  dielegtric material. Singh & Pipkin* discussed the possible deformations

in an incompressible dielectric.

In this paper, we consuler the problem of bendlng of aninitially curved block of a
compressible dielectric - material with a uniform surface charge on ' the outer surface
of the cylindrical block. It is .observed that the. stress distribution does not depend on,

the surface charge. The transverse stresst and axml s’oresst are both independent

of the polé.rization P(r) explicitly. The reSults for a ma,temal having - particular
strain energy function are discussed in detail.

3

ROTATION AND. FORMULAE

The basm equations of homogeneous isotropic dielectric are, in Enngen s notation
as follows :. / :

(¢) Field Equations

,Lb—¢’k=0 R O ®
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where V; is the volume that the dielectric eupies, semicolon and comma stand for
covariant and ordinary partial differentiation respectively, t;“ is the Cauchy stress
tensor, f; is the body force per unit volume, p the density,  E* the locdl électric

N
field, ¢ the electrostatic potential, P the polanzatmn, €p & constant and gs is the

volume free charge.
23
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(#%) Boundary conditions S | |
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where S is the surface of the dielectric.. The Cauchy stress tensor t;k is defined
by - , o . ‘
§=L—M e

where L;‘, the local stress tensor and LE" are given by the constitutive relations (8) and
(9 and M {G, the Maxwell stress tensor is given by

M:c = €p [ 'ﬁnk ¢ — % ¢’m bm 1 Slk | (M

Tn (5), n; denotes the exterior normal to S;, w; denotes the surface free charge and
donble bracket stands for discontinuity across the surface. : -

(et8) Constituiive relations

- The local electric field and the local stress tensor'é;.re given by :

e [ #Z 3 |
z =-2L[Iswak+(?~—+113 )crxk_ﬁ,c_zlc

Po oIy ! ol el ol :
( v
0 it pn pi 2 ok pmopr g 8% a4k g—tn | ‘
+ S P P T ek e P S ett o Pm‘P,.] (®)
g _2p 22 _1p 0% or . 2% 4 - ‘
& “po[alf'" Tan W T, A L@

where Z = Z (I, P), (r = 1to 6) and I, are invariants based on the strain and polari-
zation. The strain invariants are given by '

Li=(c1)f 2L =12 — (¢ ) (), L= | ;|
L=or %P Py, Iy=cs* PP, Iy=P; 2 =1/ (10)
- Po

and | ¢;7*¢ | is the determinant of the matrix lej2él.
BENDING OF AN INITIALLY CURVED CUBOID
Let X* be- the cylihdrical coordinates (R, v, Z) to describe the cuboid before
deformation given by R =g, and R =b; (a0, > b)), v =+ vyand Z = L+ Z,.
Let z* be also the cylindrical coordinates (7, 6, z) with the samte origin and

z-axis and the cuboid after deformation be given by r = ¢;and r = d, (¢; > d)
and 6 = 46, and z = 4 2, - ,

Since the surface B = a constant goes into r = conSpant, planes v = & constant
to 6 = a constant and the plane Z = a constant to z = a constant, we have

R=R@) v=240, andZ=Xx (1)
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where 4 = vy [ 6y 5 A = Zy | zo The deformation tensor ¢;~1% is glven by
1 /R 0o - o 1 V
e 2k || = 0 2 | A2R? 0 ‘ (12)
o 0 e
where dashes denote differentiations with respect to .
Electrostatic Potentiol, Mazwell and local fields : -

Because the deformatmn is radial, let us assume the electrostatw potentml é, polar- .
- -

ization veotor P and electric field E to be functlons of the radius 7 and given by

: - - )
$ =¢(@), P=[P ()0, 0], E=[E(@)00]
The field equation (8) is given by "
' ¢ 1 d6 1 d(eP) :
g T Y T T Tar (13)
in the absence of volume free charge in the body and space outside it. EQuation (13)
glves ¢ for the three regions 0 <r<d; d; <r < o1 and r > ¢, respectively as

©¢=F r<d

e‘,‘qb=15'+c'logr~1-JP(g)azs;czl<r<c1 ” (14)

b= D + Glogr r> d

On using the regularity condition of ¢ on the z axis, the constants F B, C, D, G
are to be determined from the boundary . conditions viz., (5) on both the Surfaces and
there is a surface charge wy on the outer surface of the body. These give,

C=0 G =—cow

The other constants are left arbitrary as they do not enter the stress dlstmbutmn
Itis interesting to note that the electrostatic potential ¢ inside the body is not effec-
fed by the surface charge densuty on the outer surface of the body

From .ME = — grad ¢, we get the Maxwell electric field as X

[}

r 0 . ‘ .ﬂ ; :
_Mﬂz_e_f_’,ME — M=o j (15)
o .
and Maxwell stress field from (7) is given by
, 0 / P ' 9 3
Mﬁ = _Mo = _/Mz = 2¢ .’ Mg = M’ = MG = 0 (16)

The strain invariants are given by ;
1 2 1 . 1 2

h=— +tpmptx h=vrrtrmt zpm
‘ i "'2 . - 'Pz X . . Pz‘\ .
L=gppm h-grib=-gri b= 1
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From (9), the local electric field is given by i
¥ 2ARRP[ 1 o5 |, 1 o% , 1=
"= v [ BT oI, T RT o, T, ]

é,nd the others are identically zero. Field equation (2) is satisfied if

SAARRP[ 1 ef |, 1 = 23 221 5 ‘
' r ~[R'az4+ RTa_15+”aT]‘-P (18)

~ As P is a non-zero factor, (18) is a differential equation in R’ and R which can be
solved when the form of Z'is known. This equation does not give the polarization vector
but leaves it still arbitrary. As R = R (r) is determined from this equatlon, the
»deformation tensor depends on the material constants unlike in the problems of incom-
~ pressible materials®. Also, R = R (r) depends on the constants entering thmugh
the strain invariants containing the polarization vector. Because P(r) cancels out in
(18) leaving a first order differential equation (21), we could consider non-homogeneous
radial deformations only when & surface charge-is applied to the outer surface.”

¥rom (8), we get the non-vdnjshing local stress components to be
r _ 2XARR'[ 1 8% ( 2 1y 1 5=
’ 72 oX | P 2X | 2P ez]
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The Gauchy stress tensor in (1) can be caloulated from (6), (16) and (19) .'T'he first
of the equations of equalibrium (1) reduces to

dg (g —d )

& T =0 (20)

asI, (r = 1 to 6) and the strain energy function X are functions of r only. The
other equations are satisfied identically. Equation (20) gives on integration :

7 f,exp “‘ S dr]':p—j(f}% é‘*—-) exp(J —rf:?’f—adr)dr @1)
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where‘,-’. :
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This-determines the polarization undetermined so far. The two constants of in-
T tegmtlon in (1) and (18) may be determined from the condition = -
t—-Oonr-—clandr—-d L ‘ (22)

Thus the polarization vector on using (21), deformation - tensors. on using (17) and_
(18) and stress distribution on usmg (6), (16) and (19), can be determmed in complete

It is interesting to observe ‘that both the transverse stress t and axial stress i, are

independent of the polarization vector P(r) explicitly. Also 113 is.to be pointed - that the
above parameters are independent of the surface charge denmty «y on the surface
r = 01 __/\

Boundary Oomimons s
To maintain the defomnatlon, we should apply
(¢) & resultant force F, to the edges 0 = -+ 6, given by
‘ o ‘

F, = f &, dr
(i5) a resultant force F, to the edges z = - 2, given by
S Cy
i

(664) & couple M, to the edge 6 = - 6, given by
[ .
\ d, :

~ () a couplegM, to the edge z = - 7, given by

=ft:'rda‘
by :
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A PARTICULAR CASE

To have a olear idea of the above results let us assume .

Z = (=8) ta(h—8) + o] 4+“¢s F N )
The local eleotric field is given by B : ‘
Ey 2 ARR'P " o~
L =-—T_,[R,2+a6] e

“and (18) reduceé to

‘ EoAAR (a4+0£6R'2) == "'R’ . (25)

whlch gives on mtegratwn ) - , o
[aot + () | 7% g% 4w

where b = 4 e x4 oy ; bR\/% = r\/'%(l _tz)

and 4, is a constant of integration.

Similarly equatlon. (21) can also be integrated for P? and obtained as

2 »
= ‘0(“:2“‘1 ),[4)("600:4109 (2:2 - 2%“ log(Br_rz) ]
+x§j%;[‘42(a2+alaz)zog¢+{ ag b2 A2 (g + g ) } |
log (B—7) “2bAr]—-—2 D T @)

/where A; B =1 and D is a constant ¢f integration. Thus the polarization P2 and
R = R (r) are determined through (26) and (27). The stress distribution and the
eleotric field can be calculated.

CYLINDER UNDER UNIFORM PRESSURE

The results for this can be easily obtained by puttmgA land A =1 as 6, = 6,
= = and the displacement with axial direction is not consudered The boundary
condltlons (22) are to be modified to.

{, = —p; when r = d, and ‘
= — p, when 7 = ¢ R (28)
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