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In this paper, the problem of bending of an initially curved cylindrical block of compressible 
dielectric material is solved when a uniform surface charge is applied on the outer surface of the 
block. It is observed that the surface charge applied to the outer surface does not effect the stress 
distribution. The results for a material having a particular strain energy function have been 
discussed in detail. The results for a cylinder under uniform pressures are indicated. 

'i 

Recently, Toupin1 derived the fundamental equations for compressible diekctrio 
material. Eringen"3 reoriented the topic using the variational technique and solved 
the problem of pure shear of a block and uniform extension of a circular cylinder of in- 
compressible dielegtric material. Singh & Pipkin4 discussed the possible deformations 
in an incompressible d61ectric. 

In this paper, we consider the problem of bending of an-initially cu~ved block of a 
compressible dielectric material with a uniform surface charge on the outer surface 
of the cylindrical block. It is observed that the stress distribution does not depend on 

the surface charge. The transverse stresa t j  and axial stress ti are both independent 
of the polarization P(r) explicitly. The results for a material having particular 
strain energy function are discussed in detail. * 

c R O T A T I O N  A N D  F O R M U L A E  

The basic equations of homogeneous isotropic dielectric are, in Eringen'ss notation 
as folliws : / - 
(i) Field Equations 

t:;k 4- P & = O  (1)  
E" $,b = 0 
L \ (2) 

where V d  is the volume that the dielectric &upies, semicolon ahd comma stand for 
k covariant and ordinary partial differentiation respectively, tl is the Cauchy stress 

tensor, fi is the body force per unit volume, p the density, LEfi the local6lectrio 
-f 

field, + the electrostatic potential, P the polarization, 6; a constant and q f  is the 
volume free charge. 
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R whm Sd i8 the surface of the dielectric., The Cauchy stress tensor t~ is d&ed 

by 
iC: M; td = L& - (9 

- 
~ h w e  L;, the local stress t w o r  and $? are given by the constitutive relations (8) and 

(9) and M;, the Maxwell stress tensar is given by 

M! = €0 [ K d,r - t +,m 6.m ] (7) 

In (6), n k  dtmot88 the exterior normal to Sd, wj  denotes the surface free charge and 
double bracket standa for discontinuity across the surface. 

The local electric field and the local stress tensor & given by r 

where B = B (I,, P), (r r 1 to 6) and I, are invariants based on the strain and polari- 
zation. Tbe strain invariants are given by 

f 
Il = (c-1 ), is 2 I2 = I12-(c-1)ij ( ~ - l ) ~ j ,  l3 = 1 c-1 ij 1 
1, = c r l k  PI pkY I, = ob-sk P, P ~ ,  3. = P ; 2 = 1 / fi8 

Po 
(10) 

and .f of-1 I is the determinant of the matrix 11 cj--l "1 . 
B E N D I N G  OF A N  I N I T I A L q Y  C U R V E D  CUBOID 

Let XW be the cylindrical coordinates (R, v, Z) to describe the cuboid before 
deformation given by R = al and R = bx (al > bl), u = + vo and Z = + Zo , 
Let sk be also the cylindrical coorgnates ( r, 8, z ) with the same origin and 
z-axis and the cuboid after deformation be given by r = cl and r = dl (q > 4) 
and 6 = f go and z = f 8,. 

Sinoe the surface R = a constant goes into r = constant, planm u = a constant " 
to 0 = a constant and the plane Z = a constant to x = a constant, we have 6 

R = & (r) u = Ad, and Z = hz (11) 
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where A = vo 1 8, ; A = 2, J Q. Tbe deformation tensor ol-lb is given by 
( 1 /R12 0 

11 GZ-lk 11 = ( : re / A2Ra 
0 11x2 I (12) 

where dashes denote differentiations with respect to r. 
Electrosttatic Pote~ntial, HameZl alzd Zocal'@lds : 

Because the defomtim - is radial, let us assume the electrostatic potential 4, polar- 
-+ + 

isation v&r P and electric field E to be functions of the radius r and given by 
+= + 

4 = P = [ P  (r), 0, 0 1 ,  E = [ E  (r), 0, 01 
!Fhe field equation p) is given by 

in the absence of volume free charge in the body and space outside it. Equation (13) 
gives 4 for the three regions 0 < r < dl; dl < r < c, and r > cl respectively as 

€04 = I? r < dl 
C 

e,') = B + C log r + [ P (8)  d t  ; dl < r < el (14) 
J 

e o # =  D + G10g T r >  dl 
using the regularity condition of 4 on the z axis, the constants P, B, C, D, G 

are to be detemined from the boundary conditions viz., (5) on both the surfaces and 
there is a surface charge wj on the outer surface of the body. Tbese give 

The other constants are left arbitrary as they do not enter the stress distribution. 
It is interesting to note that the elec6rostatic potential imide the body is not effw- 

by the surface charge density on the outer surface of the body. 

+ 
From M E  i: - grad 4, we get the Maxwell electric field as 

and NaxWell stress field from (7) is given by 1 

The strain invariants are given by 
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From (9), the local electric field is given by 

fiEr E + - 1 --- 8.c + '"I E4 cI, 

and the others are identiqally zero. Reld equation (2) is satisfied if 

As P is a non-zero factor, (18) is a differential equation in R' and R which can be 
solved when the form of t '  is known! This equation does not give the polarization vector 
but leaves it skill arbitrary. As $ = R (r) is detmined from this equation, the 
deformation tensor depends on the matertal constants unlike in the problems of incom- 
pressible materials6. Also, R = R (r) depends on the constants entaring though 
the strain invariants containing the polari~ation vector. Because P(r) cancels out in 
(18) leaving a f is t  order differential equation (21), we could consider non-homogeneous 
radial deformations only when B surface charge is applied fo the outer surface. 

From (S), we get the non-varnishing local stress components to be 

The Uauohy stress tensor in (1) can be calculated from (6), (16) and (19). The first 
of the equations of equalibrium (1) reduces to 

as I, (r = 1 to 6) and the strain energy function 2 are functions of r only. The 
other equations are satisfied identically. Equation (20) gives on integration : 
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IP where 

2 h A R  @ 4 X A R  1 fa (r) = ------ --- + - - -- - 
TR' a14 r R'8 aI, 2% I 

This determines the polarization undetermined so far. The two constanCs of in- 
' . tegriktion in (1) and (18) may be determined from the coaditi6n 1 

tr = 0 on r = c, and i =- 6, (22) 

~ h l s  the polarization vector on using (21), defamation hneors on using (17) smd 
(18) and stress distribution on using (6), (16) and (19), can be determined in complete. 

I$ is interesting to o b m e  that both the transverse stress t;' and axial 'straes t i  are 
independent of the polariz&tion vector P(r) explicitly. Also it is to be pintad th& the 
above parameters are independent of the surface charge density % on the surfaoe 
r = cl' J 

Boundary Coditions 
To maintai~ the deformation, we should apply 

. (i) a resultant force F, to the edges 6 = f 6, given by 

(ii) a resultant force Fa to the edges :: = -J= zo given by 

' 3, = f r: ar 

$1 

(iii) a couple MI to the edge 9 = & 9, given by 
P 

zl = f I' t i  dl' 

4 
- (iv) a coupli@f2 to the edge z = f zo given by 

, = f  c r .  

4 
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A P A R T I U U L A R  C A S E  

To have a elear idea of the above result's, let us assume 

2 = at (11-3) + ccz ( 1 2 - 9  -t- a4 4 -f- a; I 6  (23) 

The local eleotrie field is given by 

and (18) reduces to 
2 %XAR ( & + a , 2 e t a )  = r R f  125) 

, 

which gives on integration - 

L J 

where b  = 4e0AAa6 ; bR1/aY = r&(1 - t 2 )  

and A, is a constant of integration. 

Similarly equation (21) can alsa be integrated for P and obtained as 

log ( B - r )  
B 

where A, B = 1 and D is a ookstant @ integration. Thus the polarization P and 
R  = R  (r) are determined through (26) and (27). The stress distribution and the 
el&o field om be oalculated. 

C Y L I N D E R  U N D E R  U N I F O R M  P R E S S U - R E  

Tbe results for this can be easily obtained by putting A = 1 and X = 1 as 8, = O0 
= rr and the displacement with axial direction is not considered. !Fhe boundary 
conditions (22) are to be modified to 

t: 'F ---pi when n = dl and 
- - - fi when r = c1 (28) 
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