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The problem of the boundary layer flow near the stagnatlon point of a la,mma rotating
- unsteadily in the presence of a fluctuating free stream directed normally towards it, has been
studied in this paper. The velocity distribution has been obtained for the two hmmng cases of
large and small values of the frequency of oscillation. The. transitional ffequencies for which
the two approximate solutions overlap have been ‘obtained and presented in a tabulated form.

During the past few decades the study of unsteady laminar boundary layers was
restricted to problems of impulsive or oscillatory boundary layer growth on rigid bodies
with or without a mean velocity in the flow field. Only recently considerable attention
has been given to the problems concerning .the effect of a-fluctuating free stream  flow
on the boundary layer growth over a vibrating or oscillating body. This study has many
practical applications, e.g. in acoustics, turbomachinery and nissile dynantics. :

Lighthill* initiated the study of the response of the ﬂuctuatwns present in the main
stream to the boundary layer growth on a two dimensional body. He obtained the
low and high frequency solutions by using the momentum-integral method. Since then
a number of papers?*® have appeared on the subject. Recently a survey of the study
of the response of the laminar boundary layer to a fluctuating stream has also been
made®. Srivastava'® extended Lighthill’s work to investigate the axi-symmetric boundary
layer fluctuations near the stagnation point.

But in the above problems rotation of the boundary or the rotating flow of the
fluid is not taken into consideration. In most of the problems of design, such as, the ship
propeller "behind the hull, the circumferential or the rotatory flow interacts with the
axial flow. A simple mathematical model to study the effect of rigid boundary rotation
on the fluid motion was investigated by Theodore Von Kdrmdn. Only steady flow in
the absence of an axial flow was considered by him. Schlichving & Truckenbrodt?
studied the Kdrmdn problem, in the preseénce of axial flow, Further detailed studies of
this problem were made by different authors*»?2, The attempts to investigate the
unsteady flow of the fluid induced by the torsmnal oscillations of a lamina about the
axis normal to its plane were made by Rosenblat® and Benney?. Benney also
considered the flow induced by a lamina oscillating about a mean rotation in the fluid
which is also rotating with uniform angular velocity at infinity?. The solution obtained
' by Benney is faurly complicated even when the external axial flow is absent. All these
investigations in a way do help the designer in making suitable mechanical systems in-
volving the rotation as well as the translatory motion along the axis of rotation. But the
actual flow fluctuations of the fluid near the boundary, 1nduced in such a situation, it °
seems, have not been studied so far. :

+ Present address s—Directorate of Scientific Evaluation, Min‘fstty of Defence, New Delhj.
; 7
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In the present paper, we have studied the boundary layer flow in the presence of a ™
fluctuating free stream near the stagnation point of a lamina oscillating in its own plane.
The velocity components in the directions of r and z outside the boundary layer
are taken as : " :

U= (ay+a eot)r, - ,,—z‘—-f—2 (ag + oy eieot) 2

respectively, Where,ao represents the mean axial flow, @, and o are the amplitude and
~ the frequency of oscillation. The time dependent angular velocity of the disc has also
been taken of the similar form ' : :

where £2, represents the mean rotation and 2, and w are the amplitude and frequency
of the secondary flow. Both oscillatory components of the axial and rotational velocity
* are assumed to be of the same frequency. o

Taking the amplitudes of the oscillatory components ‘@, and. 2, to be small (retain-
ing the first order termsin g, and ©,) two situations have been considered. In one
case £, > a, and in the other ¢y > £, The former corresponds to the case when
the mean circumferential flow is dominant and the later to the case when the mean axial
flow is dominant. When the angular veloeity of the dise is zero, the problem Treduces
to that of axi-symmetric unsteady stagnation point flow studied eatlier by Srivastaval®,
The solution of the unsteady flow problem presented in this paper is the first order
perturbation due to a; and £, on the steady state solution obtained by Schlichting
& Truckenbrodt®, The solution is obtained numerically for low and high values of

- frequency. Also the numerical values of the transitional frequencies for which the low
and high frequency solutions overlap are presented in a tabulated form. E

FORMULATION OF THE PROBLEM

Let us consider that a fluctuating fluid impinges normally on a lamina rotating
in its own plane. The resulting flow of the viscous incompressible fluid in this case is
axially-symmetric and is governed by the equations

éﬁ.a}-uﬁ——ﬁr ,wﬂ=-igﬁ+y{&+ a(u)-}- azu} (1)

o e 7 oz p or arr g\ r 922
Gregrrres G (OB o
_%+u%+w%§=‘—3%€—+v{%¥ ‘—}%4—?;—::} (3
%+%+%= 0 ‘ @

where all symbols have their usual neanings.

The lamina is represented by the plane z = 0 and the fluid occupies the region
z > 0, Taking the stagnation point as the origin, the velocity components in the
directions of r and 2 just outside the boundary layer can be written as

U= ar, W = —2q, where a = (a, -+ ayeiot) . )
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¥ Thus the boundary oondltwn.a are SOR e
u—0v='r(52 +.Qlemt)w--0at.z~0 ' ;
. : - (6)
R u—r(ao+a,lew‘) v=10 atz—s
where 8 is the boundary layer thickness. '

* The velocity components within the boundary Iayer in the nelghbourhood of the
axis of rotation can be taken as S :

u = rf(zt),v =19 (z t),w-k(z t) | ]

We also assume that the velocity oomponents and the pressare w1thm the boundary
layev vary sinusoidally about steady mean Values and Wnte

-

3 C o f(at) = Eo(n) + Fi(n) e ®
g(nt) = Go(n) + Gy(n)eot -

h(nt) = Hy(n) + Hy(y)eiwt (10)

P(r,2,8) = Py(1,2) + Py(r,z)eiot a1

- where Fy, Gy and Hy are small and % = 2/3.
The boundary conditions (6) now become ,
FG_FI__O G’u-—.(?o, Gy = 8, Ho-m}l1~0atq_0 ]
Fy=0a, F;=a, F.,:Fo:»FlvFl*O 1 ‘ (12)

Gu=G1=0"Go'—GU”=G'~G”~O abg =1

Substituting (8) to (11) in equations (1) to (4) and equating the time independent
terms and those which are linear in F, G4, Hy, and their denvatwes to zero, we get; - ‘

— G HFy 3 = o 2B +<v/82)F” ®m
/‘21?0 Go + H, Gy l :(v/sﬂ b’ (14)
| 'Hoﬂo'é_———% —@I)—a%-i) O A )
oF, + Hy % =0 . )
and -
iwFy + 2 (Fy Fy— Gy Gy) -+ (Hy Fy + H,Fy) §=——§7 Plaf," z)+(»/sz " 1)

iwGy -+ 2 (Fy Gy + F1 Go) + (Hy Gy + H, Gy) *8—}“—: (v82)G1” (18)
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w’wa+<\Hon+HIHo’> —~;=' :Eaﬂ;:,;; +( o a ay ™
- R+ E ”a“ =0 (20)

From (13) and (15) we ﬁ-nd 'that - >

= Constant = 4, sy ’bing
giVBSFo Go +Ho Fo -g/"—‘ V/az)Fo”—-— 11.

Using the boundary condltmns (12) atn =1, one gets 4, = w,, and- thus the above
expression becomes v

B — G + Hy By < = “02,+ (V/Sz)Fo” 2y
\ ’ ) : N s
Similarly from (17) and (19) — pl 9—%1‘——?—) — A, where A, is & constant.

‘ 'l'he boundary condition atn = 1 gives Ay = 204 ay »{— 1way and thus we get
iw (Fy—ay) + 2 (Fo Fy— Gy G ) + (Ho Fy + Hy Fy >—— =200+ () B ()

- The equatlons (21), (14) to (16) are those derlved by Schhchtmg & Truckenbrodtg"
for the steady flow of fluid impinging ona disc rotatmg with uniform angular
velocity. The functions Fy {n) and G, (7) inthat case are glven by

Fo(n) = ayr® ( 10—157 + 672) + e (1 —617% -+ 8r8—39t) + oy ( 1—3n+-3n2—7"), (23)

and Go(ﬂ)—90(1—2ﬂ+271 ——714) R (24)

where ¢; and ¢y are constants. s i
Two cases (3) By < ao and (i) 2y = do have been discussed by them.

(5) When @y < ap and g = £/, - '

D1v1dmg the expressions (23) and (24) by ¢4 , one gets

F ——"73(10“—15’7+617 )+——7)(1—~6n2+8113-—3v;)+-—,7 (1...3,7+‘3,72 "'13)

6,
andT 9(1 2+ 293 —"74)
0 .
The values of the constants ¢;/ay, ¢x/ay , (ao/y) 82 for different values of ¢. as obtamed
by Schhchtmg & Truckenbrodtz" are given in Table 1.

(m) “When 2, = a, and p = ¢,/2,. Now dividing (23) and (24) by QO , one gets
B2 = 1 (10—15--61) + 4/ Qgn (1—61P-H87P—31) -+ co/ oy (1 —Sn -+ s )

and Go/Qo—(l—“z"I‘l“Q"l —1t)

The constants /R0 5 o/9 and (/) & for different’ values of 'p are given in

Table 2. | . ‘
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VALUES OF QONSTANTS ¢, [ty cgla; 8nd @;5,/v FORDIFFERENT VALURE OF g

q oo e - 61{0‘,«‘») e R '6,/%, e = | . 0062[”
4 : - - —
1 2-961 —3:730 3-73
3 ©2.764 —2-992 3-83
bt . 2:625 ; -2-438 - 3-90.
3 2535 S —2.098 3-95
0 2-502 o —1:085 3-97

TABLE 2

. VALUES OF QONSTANTS 01/90, Co/$2) AXD ¥oR DIFFERENT VALUES OF p

P I B /%2y ' ; e/ . R -1

0 1-929 C—6-538 13-07

3 1-832 —4-978 9-37

H / 2-054 : . —4-050 "6-48

3 . 2-454 : L3742 4-79

1 2:961 ‘ —3-730 3-73
ANALYSIS °

It is not easy to get the exact solutions of the equations (18) to (20) and (22) inspite of
their being linear in Py, G, and H, for any arbitrary value of the frequency. - Therefore we
obtain a solution for the low frequency range by using the idea of quasi-steady state which
has been introduced by Lighthill! to study the two dimensional boundary layer flow in a
fluctuating free stream. For the high frequency solution we retain only the terms having
w as the co-efficient and the second order derivatives of Fy, Gy and H,. It is justified on
the basis of singular perturbation theory used for the solution of a differential equation
when the co-efficient of its highest derivative is a vanishingly small quantity.

(¢) Low Fregquency

The solutions of eqlia;tions (22) and (18) to (20) in the limiting case when w -> 0
are the quasi-steady solutions. Let them be denoted by Fy(n), G3(n) and Hy(g). . The
- differential equations (22) and (18) to (20) for w==0 become

o 1 ;
. 2(FgFy—GoGy)+ (Hy Fy +52F0')§ = 2a9 0, + (v/8%) Fy’ ~ (25)

o - 1 oy \ o
2(F,Gy+ FyGy) + (Ho Gy + Hy Gy ) 5 = (v/?) 6y T (26)

(Holy + M) y=—— 2202 4wy, @)

21”2-%-‘52'%:0 o a © (%))
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The boundary conditions are o %
Fy=0, Gy=0,, Hy=0 at =0 :
- (20)
F2=(1/1,F2'=F2”=0,02=O,G'=G‘2”=03;t1)=1
The equations (25) to (28) are solved by Karman—Pohlhausen method. Assuming Fy(7)
and G, (n) each to be polynomial of 5th degree and qatlsfylng the boundary conditions
(29), we ha,ve
Fy(7) = ayr® (10—157+6x2) + Ky ( 1—6u2+-8y? ~3n H‘Kz"? (1—39+342—x%) (30)
and Ga(n) =2y (1 —107% + 159* — 64%) -+ By (1 — 6,2 + 84" — 3*)  (31)
The co-efficients K, and B satisfy the relations '
Ky = — v ( 9091"r'%“1) )
and B B = ( 25, ) : ~
, \ on Jo ' i
Integrating (25) and (26) between the limits 0 to 1 and using (28) we get
— o E|_ =2 [ @R E-Ge a2 [ (a2 (2
and — (v/82)Gy 0=4f (FoGy+ F,Gy) dy ‘ 33) .
= 0 z ,

Substituting the expressions for Fy, F, , Gy, G, ete. into (32)5 and (33) we get
v 151 208 ¢ 23 ¢ 47 (100 311 ¢ 28102)
(a 82+1155+3465 a0+2310a0)B+(315 )K [(2’3‘1+m@+6930% w
13 8 .1, 8/)(1,_
‘ T 630 » ¢ T 35 630 G 1% )10 gy
L 3 104 ¢, 23 ¢ . ( 47 127 3¢ 2T 02)
(782"‘7’"77 155 g 540%) Klf' 6??6q)3“[(”7—7+770¢70’“4620 a
27 23 ¢; | Leg\ay? [( 27 23 ¢ . 1 ¢y \apd?® _1_8} ‘
+(462O+1540a0+385a0) o jat 462O+1540a0+385a0) vt %,
for the case By < aq '
and

\_._..__.______._. y

‘ 151 208¢ 23 o 47 1
( o T iiss? T 365 0, T 2310 8, )B+(315)K

100( 311 ¢ 281 ¢, 6 13 \ ) .
[( 231p+1155 90+69309 ) 630908/"] (?75——@017908# @

3 104 ¢, 23 e AT\ (121 3¢ 2 ﬁ_\’ 35
(QS 770p+11559*15409)1‘: (@6)3”[( 7P 00, T 1620 2 r )

2\3 Cy 1 Cg .9082 27 23 ¢ 1 02' .
(4620 a0 8, s ) et | (e +TE6?Z,+§§5?Z,)9°3 v

" 18
+ 35 ]Ql "’

*

for 2y Za.
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B TABLE 3 »
B NUMERICAL VALUES OF THE (ONSTANTS B AND K; POR CASE () Qo < a;
‘ ‘ q = /op, 8 = Qy/ay, p = )8, e .
g L . = . ]
1 —Bla, 3-34219 2-80431 2:26643 ©  1-72855 - 1-19067
oy . . 473334 4-46790 4-20249 3-93706 ~  3-67164
3 —Bja, 303816 2-5153¢  1-99252  1-46970 -94688
o Koy 467530 4-46845 4-26163 405477 3-84793
3 —Bla, 270078 2-19001 1-67927 . 1-16851 85776
Oi<ay © Kyla, 454551 4:40381 4:26211  4-12042 3-97872 _
i  —Bla, . 2-35008 1-84721 1-34433  -84145 S33857
K,la, 135969 4-28751 421530 4-14311 4-07091
0 ~—Bla, : 2-00031 © 1-50024 1-00016 -50000 +00000
Kjla, 410667 4-10667 4-10667 410667 4-10667
” .
/ 0 } 3 3 1
q
1 —BIQ 2015152 2:44919  2-74686  3-04453  3-34219
K0, 106170 1:97961 289752 3-81543 4-73334
i —BlO, 2.00128 232799 ~  2.56470 2.80141 - 3-03816
K0, -82737 1-780935 - 2.75133 3-61331 4-67530
: + =B, - 2.04302°  2-20746 237190  2-53634 270078
Q>a KO S -56679 1-56147 2.55615 355083 4-54551 - .
3 —BIO, , 201151 2.09616 2:18080 . 2-25546 235008
S /) ) - 28878 1-30651 2.32424  3-34197 435969
0 —B/Q, 200031 2:00031  2-00031  2-00031  2-00031
o 4-10667

Ky -00000  1-02667  2-05334¢  3-08001

Now for_zach case. (1) Qy < agand (¢7) 2y = ap two more sub-cases arise according
as 2. <@y or 9 >a,, When Q, < a; the ratio Ql/al = A whereas for the

other case @,/ = p.

The numerical values of the constants B and K,, for the two cases (z) Qy < ay

and (it) , £y a, are given in the Tables 3 and 4.

" For general values of w we may write

’ A | Fi(n)="Fs(9)+i0F;(n)
) Gy (n) =06 (n)+iwG,(n)
Hl(’?)—; "))+WH3(")

(36)

Substltutmg (36) mto (22) (18) and (20) and noting that F,, G, and H, are the solutions
.of these equations for e =0, we get
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, T.mwé
NoUMERIOAL VALUES OF mn doxsmﬁms B AND K1 FOR CASE (u) Qo ) %
""%I.QMA 91/“1» j—-all.Ql
N g e .
it SRR TR SRR SR
P § < -
—Bla, 427127  3-47209  2:67471 1-87643 ~  1-07815
o Ky, 2-59311  1:88743  1-18172 - -47603. 22967
\ —Bla, 4-88091  3-00704  3-30420 ° 2-61134 1-91849
3 Kyja, 4-07045 - 3-48884 . 2:00723 _  2:32562  1-74401
: —Bja, 4-18853 3-58351  2°97849 987347 1-76845
Q<a Kla, 4-63352 419671  3-75993 -.3:32813.  2-88634.
—Bfa, . 3-70380 3:14304 2:58231° ° 2-02156 1-46082
& Kyja; 476908 4-43414  4-00919 3.76424  3-42029
N —Bla, 3:34210 . 2-80431 226643  1.728556  1:10067
Koy - 4:73324  4-46790  4-20249  3-93706 @ 6’“;6;%_ i
P ‘ ’ ) .
¥ o . 1 % ;1
? | e T e
o —B/Q1 S 3-19312° 3-46266 3:73220 - 4:00174  4-27127
KiO: . 282278 276537  2-70795. - 2-65055 259311
' —B[Q. . 2-77142 325104  3-73066 . 4-21028 4-68091
i KO, 2:32644 276244  3-19844  3-63444 407045
" —BQ, 2-42008 ©  2-86219 . 3-30430 " 3.74641- - 4-18853 .
Q;>a * Ky Or 1-74718  2-46876  3-19035 © 3:91192°  4-63352
SR —BJQ, ©  2-24208  2:60819  2-97339  3-33861  3.70380
i KO 1-33079  2-19711 - 3+05443 - 3-91175 476908 -
g —BjQ,  2-15152  2:44919  2-74686  3-04453 334219
C KOy 1-06170  1-97961 = 2-89752 < 3-81543 473334
(Fz""”'l) "]‘ 2F F5 — 26465+ (HoF:s +H3F0) ; *—(V/sle " (37)
‘ - A1 e
G, -2 (F0G3+F3G0)+(HOG3l+H300’) 8 =("182)Gaﬁ o (38)
~ 1 ’ =] :
' 2F.,+E-.‘ 5=0 ©(39)
Bounda.ry conditions on Fy , Gy and H‘ afé
Fy=G,: Ha"‘o Fs ="‘“13/V Gs —9182/" at-q-O l ‘
- (40)

: 5 —

Fi=F'=0,6 =0 —=G'=0 8t g=1 ]
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We again solve the equations (37) to (39) under the boundary conditions (40) by KarmAn-
Pohlhausen method. We assume Fy; and Gy each to be plynomlal of bth degree and

write ) | v
- Fy=dy (1 — 643 + 88 — 31,4) —%alsz/v ( 1— 3;,.+ 32 — o ),,2 (41)
and - o ' ‘ ‘

Gy=Bn (162 + 88— 30t ) 3 08 (1=3n 437 —) 2 (42

‘These expressions are taken to satisfy the conditions (40).
Integrating the equations (37) and (38) between the limits =0 tonp=1 a.nd using

(39) wo get ) - / o (
- (v/sz)F l _ f(Fz—al Y dn — 2fa0F3dn+2f(3FoF _GG)d 43
and ‘_

— 0B e| = fezdn+4f (R Fy Gy ) i

Substituting the expressions for Fy, Fo I, Gy, Gy, Gy etc into (43) and (44) and
arranging the terms we get two simultaneous algebraic -equations in E and 4. These
equations are solved for E and A in the two cases 2y < a9 and Q) > g, and the sub-cases
0, <Lea,and £2,>a,. The numerical values of the constants E a.nd 4 are given in
Tables 5 and 6. '

b) High Frequency

For high frequency, i.e. when e is greater than some as yet undetermined value,
the above treatment will not give a correct picture. For this case, we approximate the
equations (17) and (18) by retaining terms involving w and the derivative of the highest
order. The equations (22) and (18) are then reduced to

iw(Fy—ay)= (v3) F ’ (45)
tw Gy = (v/8%) G (46)

The boundary conditions on Fl and Gl are

(47)

. F1=a1, G1=0 at ‘q:l

The solutions of (45) and (46) are

| __(1.1...,,)( )8

(F1=w1[1+e o "] (48)
¥
- -(1+i>(2) ~ ,

and Gi= Q¢ 2 ) : . (49)

This solution shows that in the higher frequency‘range the velocity components within the
boundary layer oscillate with respect to z also due to viscosity and remain unaffected by

the mean flow,
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NUMERIOAL VALUES OF THE CQNSTANTS F AND A FoR 0ASE () 92, < @

9=Q;;1"oi A=Qu]a, p=a|

A . :

2\ ¥ :
- o —r -52607 :36220  -10850 -03472  —.12007
Y -43434 47309 -51182 -55067 -58930
3 —E’ -5£388 40895 23412 . -05919. —-11564
o 4’ -43716 - 46923 -50128 -53336 -56536
. —E 164780 -46405  -28031 -00656 —-08716
2,<4 & -45168 47462 - -49756 52040 -5AS4S.
' b —F 71191 -52210 ~33220 14247 04734
i 4 - 47904 -49107 -50310 -51514 -52718
0 B 76885 < 57663 +88442 -19222 - 00000
| - 4 82085 - 52085 <82085 . -52085 - 52085

Where B’ = Ea, [{a; and A’==7Aa/°/a,

- \p ) -
. —B -65514 -62287 -59059 - 55883 - 52607
: . A7 —-15406  —-00764 -13969 «28701 -43434
s g -60952 67062 . -64172 '61728  -58388
; 47 —12826 01310 - +15446 *31695 - -43716
' o 3 . —E 273497 STI317 . 469138 66959 - -64780°
e 4 —-00177 04409 -17995 -31582 -45168
} . —B “75924 - -74740 " 73550 725667 71191
ya —-04814 -08366  -21645 34716 - 47904
0 —B" ~78885 - 76885 -76885 - 76885 - 76885
4° - 00000 - 13021 - 26043 -39063 - 52085

Where B” = Ea;Q; and A’ = Aay/ O,

il 4
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hore ¥ = EQ/ and A" =40/

~ 17
NUMERIOAL VALUES OF THR CONBTANTS F AND 4 FOR OASB (ii) Q) >'ay
=0l Dos A=]0: =0
" ¥
\ 1 3 3 1 o
— | 2.30553  2-60168  2:30986  2-01403 - 1:72020
.- 0 7T 253842  2-67312  2-81582  2-95452  3-09322
_ —F 1-25698  +98685 71651 ‘44628 17606
i a 1-61571 1:75420 1-89266  2:03104 - 2-16960.
—F 77454 53677 -20922 06167  —+17608
2, <0, } T ~90000 .99410  1.08819  1-18228  1.27638
—F 61704 -41900  -22116 02322  —17T4TL
& e - 58374 -64336 -70299 +76264 -82228
L —F -52607 . +36229 19850 03472 —-12007
1 T -43434 +47306 *51182 «55057 +58930
) Where B = E o/, and A'= A (/0
, ) . : H . ‘
- ‘
Ve o 1 2 1
- —F 1417657 1-60638  2:03647 246548  2-89553
0 o —+ 55480 -21849  -99181  1-76510 253842
—F 1-08093  1-12495 116805  1-21209  1.25698
1 :4-, 55300 -—-01150 - -53091  1.07232 .1-61571
—E 0-05064  -90662 - -86259 +81858 77468
Q> t I | 37637 —05727 126181 -58091 - -90000
—F 79178 -74804 70440 86071 61704
3 Fo 23855 —+03299 -17259 -37815 -68374
—F .e6513  -62287  -59059  -568338  -52607
- —:15406  —+00764 -13969 (28701 +43434
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DISCUSSION ' S <

The expressions for the skin-friction at the wall in the radial and azimuthal directions

are given by ~ 7 —

fou\ .- [av
-— ) and uf =
"(a?)o e (az)o‘

In the case of high frequency they may be written as : ‘ ' .
o Sl ’/ o - e v
o o ,,,(r/Sy)[clf‘/é-vb‘al(l—]—z)e ; ] : (50)
" :\‘ ‘ ) _ ; “ N ;; N th
and S : —M(f/O)‘[on‘l' \/é; 82, (1+47)e ] (51)

_* The amplitude of the fluctuation increases with e and its phase is ahead of the fluctuation
of the main stream by 45° in both the directions. In the case of low frequency, expressions
for the skin friction in the two directions are: ' '

',;‘(7’73),[01+(K1+@'Aw)em‘] S ()

emd OB [0 (Bt iEs)e | o

The skin friction, in the radial and azimuthal direction, has phase lead of tan—! ( dw/K,)
and tan—! (Ew/B) respectively over the oscillation of the main flow. The phase lead 1
increases with w and becomes 45° for w = wp = K,/A and & = w4 = B/E where wp and '
wyare the frequencies in the radial and azimuthal directions. Such values of the fre-
quencies wg and wy for the two cases (i) Q, < a, and (77) 2y > @y and sub-cases
2, S ayand Q) > a, can easily be determined. When 2, < a; we can write

Kyloy ; | Bla,
4fa, %d P4 Ejfa,

wp =
and when 2, > a; we put

— Kl/'Ql ' 3/91
=i 0 4 e,

Putting the values of the cpnsténts K, A; B and E for different values of g and »
’?nd 301'8 Aand p we determine values of the frequencies wp and wy given in Tables
{ and o, - ) ( o o '

]
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T4apLE 7 .
VALviis oF TRANSITIONAL FREQUENCIES WR AND WA ¥OB Q& ay

q "-:;Séol'%\: A= Qila, w=a]Q,

- - :
\ 1 : S
] wR/a, 10-89778 - 9-44408  '$-21087  7-15088  8-23051
‘ odja, 7635313 7-74051  11-41778 s —
wRa, 10°68835  9-52294  8-50150 -~ 7-60231  6-80616
i wd/a, 5-20340 . 6-15073  8:51068 248302 = —
, © . wRla, © 10-06356 927860 856619  7-91875  7-32123
2 <a 1 o wdje 4:16916  4:71934  5-99076  12-10138 - —
" oRja, . 9-10089  8-73005  $-37865  8-04269  7-72208
i w4/, 3-30109  3-53804  4-04564  5-90620 -
0 &R/a, 7-88455  7-88455  7-88455  "-88455  7-88455
wd/a, 2:60170  2:60170  2:60170  2:60170 —
©
\: 0 1 1 i 1
e
oR/a, — e 2074250  13-29372 . 10-89778
1 . wdla, 3-28406  3:93210 457353 - 5:45292  6°356313
oRja, R = 17-81257 11-40025  10-68£35
& ©A/a, 2-98050  3-47140 399660  4-53831  5-20340
B oR/a, — . = 14-20478  11-24321 . 10-06356
Q>0 b wAja, 2-77973  3-09528  3:43067  3-78790  4-16916
‘ wRja, - 15-61600  10-7878%  9-62660 910089
1 wd/a, 2-64937 . 2-80460 296482  3-10811  3-30109
0 v wR/a, e 7-88455  7-88455  7-88466 788455
wd/a, 2-60170  2-60170 260170 ' 2:60170  2-60170

Dashes (;—) represent cases in which smooth transition does not take place.
I

For these tabulated values of wgp and wy we find that the amplitudes: of the
oscillation in both, the asymptotic cases of high and low frequency are approximately - the
same. Both the phase and amplitude of the skin-friction fluctuations (high as well as low
frequency) are in agreement with these values of wp and w4 . Hence they may reasonably
be taken as the values at which transition from one type of flow to the other occurs. The
dashes in Tables 7 and 8 represent those cases in which smooth transition does not take

place. ‘ J

. In the presence of rotation the numerical results given in Table 7 (£2; < al') show that
there exists & value of w - at which the smooth transition from the low to high frequency



\
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TABLE 8 -
VALUES 0¥ TBANSITIONAL FREQUENCIES WR AND, ©4 ¥or 2o 3>
=06 [0 X=01la, p=0]8
A i
r\ 1 4 3 1 0
0 wR[€, 1-0215¢ 70608 — — —_
~ ©4/Q, — - — — -
) wR[Q, 2-51929  1-98885  1-53606  1-14504 -+80384
i 04[O, 3.73109  4-05030 — — —
©R[0, 4-14836  4-22162  3-45521  2:81078  2-26135
Q< b wA4[0, 5-40776  6-67606  9-95418 —_ N
. oRiQ, 817001 689216  5-83108  4-93580 - 4-17047
i wd|0, 5-96387  7-49968  11°67621 — =
-i oR[Q, 10-89778  9-44451  8-21087 715088  6-23038
wd|0, 635313 . 7-7T4051  11-41778 — —
¢ -
1-\ 0 i 3 ' 3 1
0 R/, — — — 150164  1-02154
04| —_ 2:15691 1-83268 1-62311 —
3 ©R[Q, - = — — . 2-51929
PN 2.56392  '2-88094  3:19146  3-47000 3-73109
- i oR/Q, — — 12:18575 = 6-73412  5-14836
Qa0 04/, 2:54574  3-15699  3-83067  4:57672  5-40776
3 oR[Q, R — 17-69761 . 10-34444  §-17001
04|, - 283283 3-48651  4-22111 505306 . 5-96387
1 wR[Q, — — 2074207  13-29483  10-89778
wA[0, 328406  3-93214 465099  5-45305  6-35313

Dashes (—) represent cases in which smooth transition does not take place.

solution takes place in the radial direction but not in the azimuthal direction for lower
" values of A, It is because the axial flow dominates the circumferential flow. Again in Table 7
(2, >>0a,) there is a smooth transition in the azimuthal direction whereas in the radial
direction, thisis not the case. The reason is that the secondary circumferential flow induces
a flow along the axisof rotation directed towards the plate. This flow is responsible
for creating instability in the radial direction. We, therefore, do not get values of wy for
smaller values of p at which low frequency solution agrees with the high frequency solu-
tion. For £, = 0 1.e. the absence of the mean rotational flow, the values of wg and wy
are independent of either A or p. : N .

When £, is very small as compared to a;, this procedure of obtaining the transition
from the low to high frequency solution cannot be adopted in the circumferential direction.
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Similarly when a, is very small as compared to &2, , we do not get smooth transition in the
radial direction. The high frequency solution given by (48) and (49) also indicates that for
the two extreme cases Q; <<<a; and @; <<, smooth transition cannot occur. This
approximation gives fairly good results for transition when A and p are comparable to
each other.

In both the parts of Table 8, we observe that when £, the mean circumferential
flow, dominates the axial flow, there is almost no smooth transition specially when ¢, ~ 0
or pay0. It is again due to the instability caused by the rotation in the flow field. The
numerical results given in the first part show that the low and high frequency solutions -
do not overlap for smaller valuesof A in the azimuthal direction. In thiscase the unsteady
part of the rotational velocity is small as compared to that of the axial velocity. When
2, <a, and @, < a; rotational flow dominates the axial flow, we get smooth transition in
the azimuthal direction but there is no transition in the radial direction for lower values
of p due to the rotation of the disk which acts as centrifugal fan (see second part of
Table 8). : , .

¢

In general whenever the mean or the secondary circumferential flow dominates the
mean or the secondary axial flow, it creates an instability in the axial direction. This
will be responsible for not giving good results. for the valuesof the frequency at which
smooth transition may take place. : e :

FEW PARTICULAR CASES

() =0, A= 0give Q) = £, = 0. This case can be interpreted as ‘“unsteady
flow in the neighbourhood of an axi-symmetric stagnation point”. Srivastaval® who
studied this flow has obtained the value wp = 8-0846 @, at which the transition of one:
type of flow to the other occurs. Whereas from our solution, the value of this frequency is
7-8845ba,. '

© (¢¢) When the mean flow is absent (i.e., @y =0, 2, = 0,) the low frequency solution does
“not exist. The high frequency solution is valid for all values of the frequency. This case
can be interpreted as “torsional oscillations of a disk in & pulsating stream”. In the absence
of ‘the pulsating stream i.e., a; = 0, we get the problem of the torsional oscillations. of a
disk in a fluid at rest. Our solution in the later caseis the first order approximation of that
obtained by Rosenblat?®. When-Q, = 0, we get the flow of the pulsating stream past a
fixed lamina. : '
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