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INTERACTION OF OSCILLATORY FLOW WITH A NON-UNIFORMLY 
ROTATING LAMINA 

Ilefence Science Laboratory, Delhi 

(Received 1 January, 19(59) 

The problem of the boundary layer flow near the stagnation point of a lamina rotating 
unsteadily in the presence of a fluctuating free stream directed normally towards it, has been 
studied in this paper. The velocity distribution has been obtained for the two limiting caws of 
largo and small valueb of the frequency of oscillation. The transitional fiequcncies for which 
the two approximate solutions overlap have been obtained and presented in a tabulated form. 

During the past few decades the study of unsteady laminar boundary layers was 
restricted to problems of impulsive or oscillatory boundary layer growth on rigid bodies 
with or without a mean velocity in the flow field. Only recently considerable attention 
has been given to the problem concerning ,the effect of a fluctuating free stream flow 
on the boundary layer growth over a vibrating or oscillating body. This study has many 
practical applications, e.g. in acoustics, turbomachinery and missile dynamics. 

Lighthill1 initiated the study of the response of the fluctuations present in the main 
stream to the boundary layer growth on a two dimensional body, He obtain4 the 
low and high frequency solutions by using the momentum-integral method. Since then 
a number of papers2-19 have appeared on the subject. Recently a survey of the study 
of the response of the laminar boundary layer to a fluctuating stream has also been 
madel5. Srivastavalg extended Lighthill's work to inveatigate the axi-symmetric boundary 
layer fluctuations near the stagnation point. 

But in the above problems rotation of the boundary or the rotating flow of the 
fluid is not taken into consideration. In most of the problems of design, such as, the ship 
propeller .behind the hull, the circumferential 01 the rotatory flow interacts with the 
axial flow. A simple mathematical model to study the effect of rigid boundary rotation 
on the fluid motion was investigated by Theodore Von Kdrrr~dn. Only steady flow in 
the absence of an axial flow was convidered by him. Schlichting & Truokenbrodtao 
studied the R d d n  problem in the presence of axial flow. Further detailed studies of 
this problem were made by different a~thors~l9~" The attempts to investigate the 
unsteady flow of the fluid im-luced by the torsional oscillations of a lamina about the 
axis normal to its plane were made by RosenblatB and BenneyZ4. Benney also 
considered the flow induced by a lamina oscillating about a mean rotation in the fluid 
which is also rotating with uniform angular'vel-ocity at infinity2j. The solution obtained 
by Benney is fairly complicated even when the external axial flow is absent. All these 
investigations in a way do help the designer in making suitable mechanical systems in- 
volving the rotation as well as the translatory motion along the axis of rotation. But the 
actual flow fluctuations of the anid near the boundary, induced in such a situation, it 
seems, have not been studied so far. 

t Present address :-Directorate of scientific Evaluation, Nin'stry of Defence, Ketv Delhi. 
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In the present paper, we have studied the boundary layer flow in the presence of a " 
fluctuating free stream near the stamation point of a lamina owillating in its own plane. 
The velocity components in the directions of r md z outside the boundary layer 
are taken as I 

U = ( a , - + a l e i u t ) r ,  W = - - 2 ( a o + a , e i w t ) z  

xespeotively, where a, represents the mean axial flow;-aleand cu are the amplitude and 
the frequency of oscillation. The time dependent angular velocity of the disc has also 

_ been taken of the similar form 

ica = ( Q, J, sl,ei"t) 

where $2, represents the mean rotation and 52, and w are the amplitude and frequency 
of the secondary flow. Both oscillatory components of the axial and rotational velwity 

' are msumed to be of the same frequency, 

Taking the amplitudes of the oscillatory components al and $2, to be small (retain- 
ing the first order terms in al and SZ,) two situations have been considered. In one 
case 52, 9 a. and in the other a,, 2 Do' The former corresponds to the oase when 
the mean circumferential flow is dominant and the later to the case when the mean axial 
flow is dominant. When the angular velocity of the disc is zero, the problem reducea 
to that of axi-symmetric pnsteady stagnation point flow studied earlier by Srivastava*. 
The solution of the unsteady flow problem presented in. this paper is the first order 
perturbation due to a, and Q1 on the steady state solution obtained by Gchlichting 
& Truckenbrodt20. The solution is obtained, numerically for low and high values of 
frequency. A h  the numerical values of the transitional frequencies for which the low 
and high frequency solutions overlap are presented in a tabulated form. 

F O R M U I J A T I O N  O F  T H E  P R O B L E M  

Let ua consider that a fluctuating fluid impinges normally on a lamina rotating 
in its own plane. The resulting flow of the visoous incompressible fluid in this oase is 
axially-symmetric and is governed by the equations 

where a11 symbols have their usual meanings. 

The lamina is represented by the plane z = 0 and the fluid occupies the region 
+ 

z > 0. Taking the stagnation point as the origin, the velocity components in the 
directions of r and z just outside the boundary layer can be written as 7 

U = ar, W = -2az, where a =  (a,,+a,eiot) (5) 
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n u s  the boundary conditions- are * - . ,. - - . 
i 

ec = O , @ = - r  (&+ SZleiwt), w = Oat z  = 0 

\ e c = r ( a o + a i e i w t ) ,  v = O  at  z = S  (6) 

where 6 is the boundary layer thickness. 

The velooity components within the boundary layer in the neighbourhood of the 
axis of rotation can be taken as - .  

u = r f  ( z , t ) ,  v = rg ( z , t ) ,  tu = h ( z , t )  (7) 
I 

We also assume that the velocity componmts and the pressure within the lxjundary 
laycm vary sinusoidally about s W y  mean values and write 

'> $ ( z , t )  == & t  7 + li;( 7 )  eiwt (8) 

g ( z , t )  = G o ( 7 1 )  + &I{  7 1 )  eiwt (% 
' h ( z , t )  = H o ( 7 )  + H l ( 7 ) e i o t  (10) 

p ( r , z , t )  =; P o ( r , z )  + P , ( r , z ) e i ~ t  (11) 

where E;, Gl and HI, are small aud 7 = z / 8. 

The boundary conditions (6) now become 

G* = Gl = 0 ,  G,' = G@" = GI' = CT," = 0 at 17 = 1  J 
Substituting (8) to (11) in equations ( I )  to (4) and equating the time independent 

terms and those which are linear in P1 GI, HI, and their derivatives ta zero, we get 

and 
rn 



Prom (13) and (lli) we &d that -- - aPO'r 'z '  = constant = iaaythie 
- PT ar i 

1 gives Po2 - Go2 + H, T; - (~182) F," = A, . 
J 

Using the boundary conditions (12) at q = 1, one gets ,4, = ao2 %nd thus the above 
exprassion beco-mes 

1 
&2--Go2+HoPa) - = a3+(v/8z)P,," * 

S (21) 
1 /'- 

I a PI ( r y  ' ) = A, where A2 is a constant. Similarly from (17) and (19) - - 
PV ar 

The boundary condition at  r]  = 1 gives A, = 2a0 al -+ iwa, and thus we g q  

The equations (21), (14) to  (16) are those derived by Schlichting & Truckenbradtea 
for the steady flow of fluid impinging on a dim rotating wit& unif6rm angular 
velocity. The functions Fo ( r ]  ) and Go ( r]  ) in that case are given by 
& ( ~ ) = Q ~ B ~ ( ~ O -  167+602) (23) 

and Go(?) =.Rg(l-2q+?r]3-q414, (24) 

where el and o2 are constants. 

Two casee (9 S), 4 a. and (ii) S1, 2 a. have been discussed by them. 
(i) When Jao < a. and \q = Qo/ao. 

Dividing the expressions (23) and (24) by uo , one gets 

C ? ! L = b ( l o 1 5 1 + 6 r l t )  + ~ 1 ( 1 - - 6 7 2 - + - 8 ~ - - 3 7 4 ) +  0" q2 (1--3~+34-$'J 
cc, cc, a0 

- y ( 1 - - $ + 2 ~ - q ~ )  and - - 
a0 - 

The values of the constants cl/uo, c,,'ao , ('a,/v) s2 for different values of q as obtained 
by Schlichting & Truckenbrodt20 are given in Table 1. 

(ii). When 4 2 a, and p = ao/Qw Now dividing (23) and (24) by Qo , one gets 

Fa14 = P$ ( 10-15~+66) + c1/003 ( 1-6~'+W-37~ ) + ~~IQo.12 ( 1 - % 3- 3~'-$) 
and Uo/Qo = ( 1 - 2~ + 2q3 - q4 ) 

The omstants cl/Qo , c2/SZ, and (Qo/v) S2 for diffe~ent values of p are given in 
Table 2. 
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TABLE 1 

VALUES OB OONSTANTS c,fq,,, cJa ,  and a$,,/v mr-BIsnEamE2v.r v&w& OP p 

9 r c& - .  @O - a,,Sa/t, - 
VALUES OIf OONSTANTS c1/QU9 c2/& ANn FOR DIFBBEENT VALUES OF 2 

---T 

A N A L Y S I S  
4 - 

It is not easy to get the exact solutions of the equations (18) to (20) and (22) inspite of 
their being linear in PI, G1 and Ill fop any arbitrary value of the frequency. Therefore we 
obtain a solution for the low frequency range by using the idea, of quasi-steady state which 
has been introduced by Llghthilll to study thq two dimensional boundary layer flow in a 
fluctuating free stream. For the high frequency solution we retain only the terms having 
w as the co-efficient and the second order derivatives of PI, G1 and Hp It is justified on 
the basis of gingular perturbatio~ theory used for the solution of a differential equation 
when the co-efficient of its highest derivative is a vanishingly small quantity. 

(a) Low Freqwency . 
The solutions of equations (22) and (18) to (20) in the limiting case when w + 0 

are the quasi-steady solutions. Let them be denoted by Pa ( q ), G, ( 11 ) and H,  ( q ). The 
differentid equations (22) a ~ d  (18) to (20) for o = 0 become 
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The boundary conditions are 

F2=0, G2: ,=q ,  H 2 = 0  a;t q = O  

F,  =a,, 3,' = P: = 0, G2 = 0, G,' = G," = o a t  = 1 
The equations (25) to (28) are solved bfKbm&n--~ohlhausen method. Assuming Fa ( q ) 
and G, ( q ) each to be polynomial of 5th degree and satisfying the boundary conditions 
(29), we have 

& ( q )  (10-15qf 6 ~ ~ )  + Klq (1--6r12+8$-3T4)+K27jt(1-3q+3q2-$) (30) 
and G 2 ~ ~ ) = Q l ( 1 - 1 0 q 3 + 1 5 7 7 4 - 6 ~ 5 ) + B r l ( 1 - - 6 ~ ~ + 8 r l ~ - 3 r 1 4 )  (31) 
The GO-efficients K, and B satisfy the relations 

K 2 = -  a2/v ( QoQl $ a o % )  

and 

Integ~ating (25) and (26) between the limits 0 to 1 and using (28) we get 

1 

and - ( V / G ~ ) G , ' (  q=o = 4 s  ( J ' 0 ( t , + p 2 G 0 ) ~ ~  
0 

(33) ,, 
h D 

Substituting the expressions for & , 4 , Go , G, etc. into (32) and (33) we get 

6 13 

27 2 3 c l  1 c  a o 2  27 23 c, 1 c2 aOS2 18 
+(jijTo+~<+$%j:) t 71 [(-+--+ 4620 1540a0 385 --)-+%i]qQ1 a,, v * ,  1 
for the case SZ, /- a. 
and 

,151 

100 311 c, 281 c2 13 6 13 -[( mP+fiE4+m j j - )  - m 4 8 2 / v ' ] " 4 -  (%- g o P ~ 8 2 / v )  a1 

3 

23 c, 

+, I %. , 
for 0, > % . 
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€4 TABLE 3 - 
NUNEBIaAL VALUES OIF THE aONSTA2iTS B AND 8, IFQR CME (i) Go 4 

q = Qolao, B = Q,/a,, p = a,lQl 
7 

1 2 I 1 . t 0 
n 

Now for each case (i) Go 4 a. and (ii) Qo 2 a. two more sub-cases arise according 
as $2, < al or 43 a,. When Q1 < a, the ratio && = h whereas for the 
other case ctl/Ql = p. 

The numerical values of the constants B and E l ,  for the two cases (i) Qo < a. 
and ( i i )  . S;)o 2 a, are given in the Tables 3 and 4. 

For general values oj? UI we may write . 

F , ( r l ) = P a ( S ) + i w F d S )  1 
H , ( s ) = H , ( r , ) f i w H 3 ( r ) )  J 

Substituting (36) intdpa), (18) and (20) and noting that F8, G2 and 4 are the solutions 
of these equations for QJ = 0, we get 



Boundary conditions on Ir, , G3 and H, are 

& =G3 = H3 = 0 ,  Tsb = - &a2/vr, GSn= DIp/v 8t q = 0 

F 3 = F ; =  F / = O  , G, =G3' =t&" = O  at q = 1  J 
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*; We again solve the equations (37) to (39) under the boundary conditions (40) by KBrmh- 
Pohlhausen methpd. We assume P3 and G3 each to be plynomial of 5th degree and 
write 

1 
F,=Aq ( 1 - 6 q + ~ - 3 $ ) - i a l g / u  ( 1-3q+3qa-$ ) $  (41) 

and 

These expressions are taken to satisfy the  conditions (40). 
Integrating the equations (37) and (38) between the limits q = 0 to q = I and using 
(39) we get 1 

1 1 1 

and 

Substituting the expressions for Fo, J",, F,, Go, G2: G3 etc. into (43) and (44) and 
arranging the terms we get two simultaneous algebraic -equations in E and A. These 

are mlved for E and A in the two cases Qo < a. and Q, 2 a, and the sub-cases 
sa, < cc, a d  4 2 a;,. The numerical values of the constants E and A are given in 
Tables 5 and 6. 

b) High Frequency 
For high frequency, i.e. when o is greater than some as yet undetermined value, 

the above treatment will not give a correct picture. For this case, we approximate the 
equations (17) and (18) by retaining terms involving w and the derivative of the highest 

The equations (22) and (18) are then reduced to 
io ( Fl - al ) = (v/P) F/ (45) 

io GI = ( v/62 ) G," (46) 
The boundary conditions on P1 w d  Gl are 

The solutions of (45) and (46) are 

Thi's solution shows that in the higher frequency range the velociky components within the 
boundary layer oscillate with respect to z glso due $0 viscosity and remein unaffected by 
the mean 8ow, 



, 
t -E' -71191 -52210 -33229 ~14247 --ern734 

A' -47904 .49107 .50310 -51514 -62718 

0 -E' 76885 67663 -38442 .I9222 -00000 
A' -62085 52085 .82086 ,52085 .53086 

L 

4 -. 
where E f = E a o / a l  end A ' = A ~ , / ~  

0 -E" ' 76885 -76885 -76885 .76886 e76885 
- A" .00000 .13021 e26043 -39063 -82086 

where Em = E a,/Q, and A" A#,/ Q, 

4 , .  - . - - 
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u TASE 6 - 
- 

\ 

N ~ ~ ~ R I O A L  VALUES OB THE QONeTANTS .?# AND A FOSt 0- ('%) Sdg 3 g J 

p =  aolJao, X=r(l)lla19 &=al lJa ,  

where ~ = ~ f J ~ / a ~  tGnd A D = A f l o / ~  

where E'Y=E~dolJat aha %==BJa*lJal 
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DISCUSSION q. 

The expressions for the skin-friction at tAe wall in the radial and azimuthal di;wtions 
are given by 

(5) and ji 
0 

the case of high frequency they may be written as 

and - , ~ ( r / s )  [ 2 ~ ~ +  \/$ ( l + i ) e  iM ] 
The amplitude of the fluctuation increases with o and its phase is ahead of the fluctuation 

of the main stream by 45" in both the directions. In the case of low frequency, expressions 
for the skin friction in the two directions are : 

and - ; ( r / S )  [ 2 & -  , ( B , + ~ E G ) B ( ~  1 
 he skin friction, in the radial and azimuthal qirection, has phase lead of tan-' ( Am/&) 
and tan-' ( EoLB) respectively over the oscillation of the main flow. The phase lead 
increases with w and becomes 45" for w = wR = Kl/A and rrr = w~ = B/E where w~ and 3 
wa are the frequencies in the radial and azimuthal directions. Such values of the fre- 
quencies w~ and w~ for the two cases ( i )  Go < a. and (ii) Sa, 3 a,, and sub-cases 
bal :$ as and GA 3 al can easily be deterrhined. When < % we can write 

, 

x1/a1 wR = - Bla, and wA = - 
4 %  E/a1 

and when IR, 3 % we put 

EllQl W R  = - BlQl 
AlQl 

and wA = - 
E!Ql 

Putting the values of the constants K,, A, B and E for different values of q and p 
and for h and p we determine values of the f r e g u e n h  w~ and givd in Tables 
7 and 8, 

I 
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Dashes (-) represent cases in which smooth transition does not take place. 
I 

For these tabulated values of w~ and w~ we fmd that the amplitudes of the 
oscillation in both the asymptotic cases of hi& and low frequency are approximately the 
same. Both the phase and amplitude of the skin-friction fluctuations (high as well as low 
frequency) are in agreelnent with these values of w~ and w~ . Hence they may reasonably 
be taken as the values a t  which transition from one type of flow .to the other .occurs. The 
dashes in Tables 7 and 8 represent those cases in which smooth transition dow not kake 
place. I 

In the presence of rotation the numerical results given in Table 7 ( Ql < al ) show that ' 
there exists a value of o at  which the smooth transition from the low to high frequency 



Dashes (-) represent oases in whioh smooth transition does not take place. 

solution takes place in the radial direction but not in the azimuthal direction for lower 
- values of A. It is because the axial flow dominates the circumferential flow. Again in Table 7 

( Q, 2 al )  there is a smooth transition in the azimuthal direction whereas in the radial 
direction, this is not the case. The reason is that the secondary circumferential flow induces 
a flow dong the axisof rotation directed towards the plate. This flow is responsible 
for creating instability in the radial direction. We, therefore, do not get values of for 
smaller values of p at which low frequency solution agrees with the high frequency solu- 
tion. For = 0 i.e. the absence of the mean rotational flow, the values of og and wA 
are independent of either h or 1.1. r 

When 4 is very wall  as compared to ax, this procdure of obtaining the transition 
from the low to high frequency solution cannot be adopted in the circumferential direation. 
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Similarly when % is very small as compared to SZl , we do not get smooth transition in the 
radial direction. The high frequency solution given by (48) and (49) also indicates that  for 
the two extreme cases $ << al and 4 << GI smooth transition cannot occur. This 
approximatioh gives fairly good results for transition when h and p are comparable to 
each other. 

In both the parts of Table 8, we observe that when Q,, the mean circumferential 
flow, dominates the axial flow, there is almost no smooth transition s p i a l l y  when a. m 
or p-0. It is again due to the instability caused by the rotation in the flow field. The 
numerical results given in the first part show that the low and high frequency solutions 
do not overlap for smaller values of h in the azimuthal direction. In this case the unsteady 
part of the rotational velocity is small as compared to that of the axial velocity. When 
Ja, <a9 and < al rotational flow dominates the axial flow, we get smooth transition in 
the azimuthal direction but there is no transition in the radial direction for lower values 
of p due to the rotation of the disk which acts as centrifugal fan (see second part of 
Table 8). 

In general whenever the mean or the secondary circumferential flow dominates the 
mean or the secondary axial flow, i t  creates an instability in the axial direction. This 
will be responsible for not giving good results for the valuesof the frequency at which 
smooth transition may take place. 

F E W  P A R T I C U L A R  C A S E S  

(4) q = 0 ,  X =. 0 give Q,, = GI 0. This case can be interpreted as "unsteady 
flow in the neighbourhood of an axi-symmetric stagnation point". Srivastava'g who 
studied this flow has obtained the value w~ = 8.0846 a. at which the transition of one 
type of flow to the other occurs. Whereas from our solution, the value of this frequency is 
7 .  88455a0. 

(ii) When the mean flow is absent (i.e., a. = 0, L?,, = 0,) the low frequency solution does 
-not exist. The high frequency solution is valid for all values of the frequency. This case 
can be interpreted as "torsional oscillations of a disk in a pulsating stream". In the absence 
ofdie pulsating stream i.e., ai.= 0, we get the problem of the torsional oscillations of a 
disk in a fluid a t  rest. Our solution in the later case is the first order approximation of that 
obtained by Rosenblat*. When Ql = 0, we get the flow of the pulsating stream past a 
fixed lamina. 
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