INTERACTION OF OSCILLATORY FLOW WITH A NON-UNIFORMLY ROTATING LAMINA

N. K. CHOPRA[†] & C. D. GHILDYAL

Defence Science Laboratory, Delhi

(Received 1 January, 1969)

The problem of the boundary layer flow near the stagnation point of a lamina rotating unsteadily in the presence of a fluctuating free stream directed normally towards it, has been studied in this paper. The velocity distribution has been obtained for the two limiting cases of large and small values of the frequency of oscillation. The transitional frequencies for which the two approximate solutions overlap have been obtained and presented in a tabulated form.

During the past few decades the study of unsteady laminar boundary layers was restricted to problems of impulsive or oscillatory boundary layer growth on rigid bodies with or without a mean velocity in the flow field. Only recently considerable attention has been given to the problems concerning the effect of a fluctuating free stream flow on the boundary layer growth over a vibrating or oscillating body. This study has many practical applications, e.g. in acoustics, turbomachinery and missile dynamics.

Lighthill¹ initiated the study of the response of the fluctuations present in the main stream to the boundary layer growth on a two dimensional body. He obtained the low and high frequency solutions by using the momentum-integral method. Since then a number of papers²⁻¹⁹ have appeared on the subject. Recently a survey of the study of the response of the laminar boundary layer to a fluctuating stream has also been made¹⁵. Srivastava¹⁹ extended Lighthill's work to investigate the axi-symmetric boundary layer fluctuations near the stagnation point.

But in the above problems rotation of the boundary or the rotating flow of the fluid is not taken into consideration. In most of the problems of design, such as, the ship propeller behind the hull, the circumferential or the rotatory flow interacts with the axial flow. A simple mathematical model to study the effect of rigid boundary rotation on the fluid motion was investigated by Theodore Von Karman. Only steady flow in the absence of an axial flow was considered by him. Schlichting & Truckenbrodt²⁰ studied the Karman problem in the presence of axial flow. Further detailed studies of this problem were made by different authors^{21,22}. The attempts to investigate the unsteady flow of the fluid induced by the torsional oscillations of a lamina about the axis normal to its plane were made by Rosenblat²³ and Benney²⁴. Benney also considered the flow induced by a lamina oscillating about a mean rotation in the fluid which is also rotating with uniform angular velocity at infinity²⁵. The solution obtained by Benney is fairly complicated even when the external axial flow is absent. All these investigations in a way do help the designer in making suitable mechanical systems involving the rotation as well as the translatory motion along the axis of rotation. But the actual flow fluctuations of the fluid near the boundary, induced in such a situation, it seems, have not been studied so far.

[†] Present address :---Directorate of Scientific Evaluation, Ministry of Defence, New Delhi.

In the present paper, we have studied the boundary layer flow in the presence of a fluctuating free stream near the stagnation point of a lamina oscillating in its own plane. The velocity components in the directions of r and z outside the boundary layer are taken as

$$U = (a_0 + a_1 e^{i\omega t}) r, \quad W = -2 (a_0 + a_1 e^{i\omega t}) z$$

respectively, where a_0 represents the mean axial flow, a_1 and ω are the amplitude and the frequency of oscillation. The time dependent angular velocity of the disc has also been taken of the similar form

$$\Omega = (\Omega_0 + \Omega_1 e^{i\omega t})$$

where Ω_0 represents the mean rotation and Ω_1 and ω are the amplitude and frequency of the secondary flow. Both oscillatory components of the axial and rotational velocity are assumed to be of the same frequency.

Taking the amplitudes of the oscillatory components a_1 and Ω_1 to be small (retaining the first order terms in a_1 and Ω_1) two situations have been considered. In one case $\Omega_0 \ge a_0$ and in the other $a_0 \ge \Omega_0$. The former corresponds to the case when the mean circumferential flow is dominant and the later to the case when the mean axial flow is dominant. When the angular velocity of the disc is zero, the problem reduces to that of axi-symmetric unsteady stagnation point flow studied earlier by Srivastava¹⁹. The solution of the unsteady flow problem presented in this paper is the first order perturbation due to a_1 and Ω_1 on the steady state solution obtained by Schlichting & Truckenbrodt²⁰. The solution is obtained numerically for low and high values of frequency. Also the numerical values of the transitional frequencies for which the low and high frequency solutions overlap are presented in a tabulated form.

FORMULATION OF THE PROBLEM

Let us consider that a fluctuating fluid impinges normally on a lamina rotating in its own plane. The resulting flow of the viscous incompressible fluid in this case is axially-symmetric and is governed by the equations

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} - \frac{v^2}{r} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + v \left\{ \frac{\partial^2 u}{\partial r^2} + \frac{\partial}{\partial r} \left(\frac{u}{r} \right) + \frac{\partial^2 u}{\partial z^2} \right\}$$
(1)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{uv}{r} + w \frac{\partial v}{\partial z} = v \left\{ \frac{\partial^2 v}{\partial r^2} + \frac{\partial}{\partial r} \left(\frac{v}{r} \right) + \frac{\partial^2 v}{\partial z^2} \right\}$$
(2)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial r} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + v \left\{ \frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{\partial^2 w}{\partial z^2} \right\}$$
(3)

$$\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0 \qquad (4)$$

i.

2

where all symbols have their usual meanings.

The lamina is represented by the plane z = 0 and the fluid occupies the region z > 0. Taking the stagnation point as the origin, the velocity components in the directions of r and z just outside the boundary layer can be written as

$$U = ar$$
, $W = -2az$, where $a = (a_0 + a_1 e^{i\omega t})$ (5)

CHOPRA & GHILDYAL : Interaction of Oscillatory Flow with Rotating Lamina

Thus the boundary conditions are

$$u = 0, v = r (\Omega_0 + \Omega_1 e^{i\omega t}), w = 0 \text{ at } z = 0$$

$$u = r (a_0 + a_1 e^{i\omega t}), v = 0 \text{ at } z = \delta$$
(6)

where δ is the boundary layer thickness.

The velocity components within the boundary layer in the neighbourhood of the axis of rotation can be taken as

$$u = rf(z, t), v = rg(z, t), w = h(z, t)$$
(7)

We also assume that the velocity components and the pressure within the boundary layer vary sinusoidally about steady mean values and write

$$f(z,t) = F_0(\eta) + F_1(\eta) e^{i\omega t}$$
(8)

$$g(z,t) = G_0(\eta) + G_1(\eta) e^{i\omega t}$$
(9)

$$h(z,t) = H_0(\eta) + H_1(\eta) e^{i\omega t}$$
(10)

$$p(r,z,t) = P_0(r,z) + P_1(r,z)e^{i\omega t}$$
(11)

where F_1 , G_1 and H_1 are small and $\eta = z/\delta$.

The boundary conditions (6) now become

$$\begin{array}{l} F_{0} = F_{1} = 0, \quad G_{0} = \Omega_{0}, \quad G_{1} = \Omega_{1}, \quad H_{0} = H_{1} = 0 \text{ at } \eta = 0 \\ F_{0} = a_{0}, \quad F_{1} = a_{1}, \quad F_{0}' = F_{0}'' = F_{1}' = F_{1}'' = 0 \\ G_{0} = G_{1} = 0, \quad G_{0}' = G_{0}'' = G_{1}' = G_{1}'' = 0 \text{ at } \eta = 1 \end{array} \right\}$$
(12)

Substituting (8) to (11) in equations (1) to (4) and equating the time independent terms and those which are linear in
$$F$$
, G_1 , H_2 , and their derivatives to zero, we get

$$F_{0}^{2} - G_{0}^{2} + H_{0} F_{0}' \frac{1}{\delta} = -\frac{1}{\rho r} \frac{\partial P_{0}(r, z)}{\partial r} + (\nu/\delta^{2}) F_{0}''$$
(13)

$$2F_0 G_0 + H_0 G_0' \frac{1}{\delta} = (\nu/\delta^2) G_0''$$
(14)

$$H_0 H_0' = -\frac{1}{\rho} \frac{\partial P_0(r,z)}{\partial \eta} + (\nu/\delta) H_0'' \qquad (15)$$

$$2F_0 + H_0' \frac{1}{\delta} = 0 \tag{16}$$

and

$$i\omega F_{1} + 2 (F_{0} F_{1} - G_{0} G_{1}) + (H_{0} F_{1}' + H_{1} F_{0}') \frac{1}{\delta} = -\frac{1}{\rho^{r}} \frac{\partial P_{1}(r, z)}{\partial r} + (\nu/\delta^{2}) F_{1}''$$
(17)
$$i\omega G_{1} + 2 (F_{0} G_{1} + F_{1} G_{0}) + (H_{0} G_{1}' + H_{1} G_{0}') \frac{1}{\delta} = (\nu/\delta^{2}) G_{1}''$$
(18)

$$i\omega H_{1} + (H_{0} H_{1}' + H_{1} H_{0}') \frac{1}{\delta} = -\frac{1}{\rho\delta} \frac{\partial P_{1}(r, z)}{\partial \eta} + (\nu/\delta^{2}) H_{1}''$$
(19)
$$2 F_{1} + H_{1}' \frac{1}{\delta} = 0$$
(20)

From (13) and (15) we find that $-\frac{1}{\rho r} \frac{\partial P_0(r, z)}{\partial r} = \text{Constant} = A_1$ say this

gives
$$F_0^2 - G_0^2 + H_0 F_0' \frac{1}{\delta} - (\nu/\delta^2) F_0'' = A_1$$
.

Using the boundary conditions (12) at $\eta = 1$, one gets $A_1 = a_0^2$ and thus the above expression becomes

$$F_0^2 - G_0^2 + H_0 F_0' \frac{1}{\delta} = a_0^2 + (\nu/\delta^2) F_0''$$
(21)

Similarly from (17) and (19) $-\frac{1}{\rho r} \frac{\partial P_1(r,z)}{\partial r} = A_2$ where A_2 is a constant.

The boundary condition at $\eta = 1$ gives $A_2 = 2a_0 a_1 + i\omega a_1$ and thus we get

$$i\omega(F_1 - a_1) + 2(F_0F_1 - G_0G_1) + (H_0F_1' + H_1F_0')\frac{1}{\delta} = 2a_0a_1 + (\nu/\delta^2)F_1''$$
(22)

The equations (21), (14) to (16) are those derived by Schlichting & Truckenbrodt²⁰ for the steady flow of fluid impinging on a disc rotating with uniform angular velocity. The functions $F_0(\eta)$ and $G_0(\eta)$ in that case are given by $F_0(\eta) = a_0\eta^3 (10-15\eta+6\eta^2) + c_1\eta (1-6\eta^2+8\eta^3-3\eta^4) + c_2\eta^2 (1-3\eta+3\eta^2-\eta^3), (23)$ and $G_0(\eta) = \Omega_0 (1-2\eta+2\eta^3-\eta^4), \qquad (24)$

where c_1 and c_2 are constants.

Two cases (i) $\Omega_0 \leq a_0$ and (ii) $\Omega_0 \geq a_0$ have been discussed by them. (i) When $\Omega_0 \leq a_0$ and $q = \Omega_0/a_0$.

Dividing the expressions (23) and (24) by a_0 , one gets

$$\frac{F_0}{a_0} = \eta^3 \left(10 - 15\eta + 6\eta^2\right) + \frac{c_1}{a_0} \eta \left(1 - 6\eta^2 + 8\eta^3 - 3\eta^4\right) + \frac{c_2}{a_0} \eta^2 \left(1 - 3\eta + 3\eta^2 - \eta^3\right)$$

and $\frac{G_0}{a_0} = q \left(1 - 2\eta + 2\eta^3 - \eta^4\right)$

The values of the constants c_1/a_0 , c_2/a_0 , $(a_0/\nu) \delta^2$ for different values of q as obtained by Schlichting & Truckenbrodt²⁰ are given in Table 1.

(ii) When $\Omega_0 \ge a_0$ and $p = a_0/\Omega_0$. Now dividing (23) and (24) by Ω_0 , one gets $F_0/\Omega_0 = p\eta^3 (10-15\eta+6\eta^2) + c_1/\Omega_0\eta (1-6\eta^2+8\eta^3-3\eta^4) + c_2/\Omega_0\eta^2 (1-3\eta+3\eta^2-\eta^3)$ and $G_0/\Omega_0 = (1-2\eta+2\eta^3-\eta^4)$

The constants c_1/Ω_0 , c_2/Ω_0 and $(\Omega_0/\nu) \delta^2$ for different values of p are given in Table 2.

TABLE 1

q		cila,	in the same	c ₂ /a ₀	a083/n
1 3 1 2 1 2 1 2 1 2 0		$2 \cdot 961$ 2 \cdot 764 2 \cdot 625 2 \cdot 535 2 \cdot 502		$\begin{array}{r}3 \cdot 730 \\2 \cdot 992 \\2 \cdot 438 \\2 \cdot 098 \\1 \cdot 985 \end{array}$	3 · 73 3 · 83 3 · 90 3 · 95 3 · 97

VALUES OF CONSTANTS c_1/a_0 , c_2/a_0 and $a_0\delta_0/\nu$ FOR DIFFERENT VALUES OF q

TABLE 2

VALUES OF CONSTANTS c_1/Ω_0 , c_2/Ω_0 and for different values of p

p		c_1/Ω_0	c_2/Ω_0	 $Ω_0 \delta^2 / ν$
		$ \begin{array}{r} 1 \cdot 929 \\ 1 \cdot 832 \\ 2 \cdot 054 \\ 2 \cdot 454 \\ 2 \cdot 961 \end{array} $	$ \begin{array}{r} -6 \cdot 535 \\ -4 \cdot 978 \\ -4 \cdot 050 \\ -3 \cdot 742 \\ -3 \cdot 730 \end{array} $	$ \begin{array}{r} 13 \cdot 07 \\ 9 \cdot 37 \\ 6 \cdot 48 \\ 4 \cdot 79 \\ 3 \cdot 73 \end{array} $

ANALYSIS

It is not easy to get the exact solutions of the equations (18) to (20) and (22) inspite of their being linear in F_1 , G_1 and H_1 for any arbitrary value of the frequency. Therefore we obtain a solution for the low frequency range by using the idea of quasi-steady state which has been introduced by Lighthill¹ to study the two dimensional boundary layer flow in a fluctuating free stream. For the high frequency solution we retain only the terms having ω as the co-efficient and the second order derivatives of F_1 , G_1 and H_1 . It is justified on the basis of singular perturbation theory used for the solution of a differential equation when the co-efficient of its highest derivative is a vanishingly small quantity.

(a) Low Frequency

The solutions of equations (22) and (18) to (20) in the limiting case when $\omega \to 0$ are the quasi-steady solutions. Let them be denoted by $F_2(\eta)$, $G_2(\eta)$ and $H_2(\eta)$. The differential equations (22) and (18) to (20) for $\omega = 0$ become

$$2(F_0F_2 - G_0G_2) + (H_0F_2' + H_2F_0')\frac{1}{\delta} = 2a_0a_1 + (\nu/\delta^2)F_2''$$
(25)

$$2(F_0G_2 + F_2G_0) + (H_0G_2' + H_2G_0')\frac{1}{\delta} = (\bar{\nu}/\delta^2)G_2''$$
(26)

$$(H_0 H_2' + H_2 H_0') \frac{1}{\delta} = -\frac{1}{\rho \delta} \frac{\partial P_2(r, z)}{\partial \eta} + (\nu/\delta^2) H_2''$$
(27)

$$2F_2 + H_2'\frac{1}{\delta} = 0 \tag{28}$$

The boundary conditions are

$$F_{2} = 0, \quad G_{2} = \Omega_{1}, \quad H_{2} = 0 \quad \text{at} \quad \eta = 0$$

$$F_{0} = a_{1}, \quad F_{0}' = F_{0}'' = 0, \quad G_{0} = 0, \quad G_{0}' = G_{0}'' = 0 \text{ at} \quad \eta = 1$$

$$\left\{ \begin{array}{c} (29) \\ (29) \\ (29) \end{array} \right.$$

The equations (25) to (28) are solved by Kàrmàn—Pohlhausen method. Assuming $F_2(\eta)$ and $G_2(\eta)$ each to be polynomial of 5th degree and satisfying the boundary conditions (29), we have

$$\begin{split} F_2(\eta) &= a_1 \eta^3 \left(10 - 15\eta + 6\eta^2 \right) + K_1 \eta \left(1 - 6\eta^2 + 8\eta^3 - 3\eta^4 \right) + K_2 \eta^2 \left(1 - 3\eta + 3\eta^2 - \eta^3 \right) (30) \\ \text{and} \qquad G_2(\eta) &= \Omega_1 \left(1 - 10\eta^3 + 15\eta^4 - 6\eta^5 \right) + B\eta \left(1 - 6\eta^2 + 8\eta^3 - 3\eta^4 \right) \tag{31} \end{split}$$

The co-efficients K_2 and B satisfy the relations

$$\begin{split} K_2 &= - \, \delta^2 / \nu \left(\begin{array}{c} \Omega_0 \, \Omega_1 + a_0 \, a_1 \end{array} \right) \\ B &= \left(\begin{array}{c} \frac{\partial G_2}{\partial \eta} \end{array} \right)_0 \end{split}$$

and

Integrating (25) and (26) between the limits 0 to 1 and using (28) we get

$$- (\nu/\delta^2) F_2' \Big|_{\eta = 0} = 2 \int_0^1 (3F_0 F_2 - G_0 G_2) d\eta - 2 \int_0^1 (a_1 F_0 + a_0 F_1) d\eta - 2a_0 a_1 \quad (32)$$

and $- (\nu/\delta^2) G_2' \Big|_{\eta = 0} = 4 \int_0^1 (F_0 G_2 + F_2 G_0) d\eta \quad (33)$

Substituting the expressions for
$$F_0$$
, F_2 , G_0 , G_2 etc. into (32) and (33) we get
 $\begin{pmatrix} \nu & 151 & 208 & c_1 & 23 & c_2 \end{pmatrix} = \begin{pmatrix} 47 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 47 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 21 & c_2 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 47 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 21 & c_2 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 21 & c_2 \\ 23 & c_2 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 21 & c_2 \\ 23 & c_2 \\ 23 & c_2 \end{pmatrix} = \begin{pmatrix} 21 & c_2 \\ 23 & c_2 \\ 23 & c_2 \\ 24 & c_2 \end{pmatrix} = \begin{pmatrix} 21 & c_2 \\ 24 & c_$

$$\begin{pmatrix} \frac{\nu}{a_0^2 \delta^2} + \frac{151}{1155} + \frac{203}{3465} \frac{c_1}{a_0} + \frac{25}{2310} \frac{c_2}{a_0} \end{pmatrix} B + \begin{pmatrix} \frac{41}{315} q \end{pmatrix} K_1 = -\left[\begin{pmatrix} \frac{100}{231} + \frac{511}{1155} \frac{c_1}{a_0} + \frac{201c_2}{6930a_0} \right] \\ - \frac{13}{630} \frac{a_0 \delta^2}{\nu} q^2 \right] \Omega_1 - \begin{pmatrix} \frac{6}{35} - \frac{13}{630} a_0 \delta^2 / \nu \end{pmatrix} qa_1 \\ \begin{pmatrix} \frac{\nu}{a_0 \delta^2} - \frac{3}{77\ell} + \frac{104}{1155} \frac{c_1}{a_0} + \frac{23}{1540} \frac{c_2}{a_0} \end{pmatrix} K_1 - \begin{pmatrix} \frac{47}{630} q \end{pmatrix} B = \left[\begin{pmatrix} \frac{127}{77} + \frac{3}{770} \frac{c_1}{a_0} - \frac{27}{4620} \frac{c_2}{a_0} \right] \\ + \begin{pmatrix} \frac{27}{4620} + \frac{23}{1540} \frac{c_1}{a_0} + \frac{1}{385} \frac{c_2}{a_0} \end{pmatrix} \frac{a_0^2}{\nu} \right] a_1 + \left[\begin{pmatrix} \frac{27}{4620} + \frac{23}{1540} \frac{c_1}{a_0} + \frac{1}{385} \frac{c_2}{a_0} \end{pmatrix} \frac{a_0 \delta^2}{\nu} + \frac{18}{35} \right] q\Omega_1$$
 for the case $\Omega_0 \leq a_0$

and

$$\begin{pmatrix} \frac{\nu}{\Omega_{0}\delta^{2}} + \frac{151}{1155}p + \frac{208}{3465}\frac{c_{1}}{\Omega_{0}} + \frac{23}{2310}\frac{c_{2}}{\Omega_{0}} \end{pmatrix} B + \begin{pmatrix} \frac{47}{315} \end{pmatrix} K_{1} = \\ -\left[\left(\frac{100}{231}p + \frac{311}{1155}\frac{c_{1}}{\Omega_{0}} + \frac{281}{6930}\frac{c_{2}}{\Omega_{0}} \right) - \frac{13}{630}\Omega_{0}\delta^{2}/\nu \right] \Omega_{1} - \left(\frac{6}{35} - \frac{13}{630}p\Omega_{0}\delta^{2}/\nu \right) a_{1} \\ \left(\frac{\nu}{\Omega_{0}\delta^{2}} - \frac{3}{770}p + \frac{104}{1155}\frac{c_{1}}{\Omega_{0}} + \frac{23}{1540}\frac{c_{2}}{\Omega_{0}} \right) K_{1} - \left(\frac{47}{630} \right) B = \left[\left(\frac{127}{77}p + \frac{3}{770}\frac{c_{1}}{\Omega_{0}} - \frac{27}{4620}\frac{c_{2}}{\Omega_{0}} \right) \\ + \left(\frac{27}{4620}p + \frac{23}{1540}\frac{c_{1}}{\Omega_{0}} + \frac{1}{385}\frac{c_{2}}{\Omega_{0}} \right) \frac{\Omega_{0}\delta^{2}}{\nu} p \right] a_{1} + \left[\left(\frac{27}{4620}p + \frac{23}{1540}\frac{c_{1}}{\Omega_{0}} + \frac{1}{385}\frac{c_{2}}{\Omega_{0}} \right) \Omega_{0}\delta^{2}/\nu \\ + \frac{18}{35} \right] \Omega_{1} \right]$$

for $\Omega_0 \ge a_0$.

TABLE 3

NUMERICAL VALUES OF THE CONSTANTS B AND K_1 FOR CASE (i) $\Omega_0 \leqslant a_0$

 $q = \Omega_0/a_0, \ \partial = \Omega_1/a_2, \ \mu = a_1/\Omega_1$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 11 i -	•			1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		g/A		Later and the second	<u>3</u> 4	1 2	4	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 1	$\frac{-B/a_1}{K_1/a_1}$	3 • 3 4219 4 • 73334	$2 \cdot 80431 \\ 4 \cdot 46790$	$2 \cdot 26643 \\ 4 \cdot 20249$	$1 \cdot 72855 \\ 3 \cdot 93706$	1 · 19067 3 · 67164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34	$\frac{-B/a_1}{K_1/a_1}$	3 · 03816 4 · 67530	$2 \cdot 51534 \\ 4 \cdot 46845$	$1 \cdot 99252 \\ 4 \cdot 26163$	$1 \cdot 46970 \\ 4 \cdot 05477$	·94688 3·84793
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$?₁ < <i>a</i> ₁	1	$-B/a_1 \\ K_1/a_1$	2 · 70078 4 · 54551	$2 \cdot 19001 \\ 4 \cdot 40381$	$1 \cdot 67927 \\ 4 \cdot 26211$	$1 \cdot 16851 \\ 4 \cdot 12042$	·65776 3·97872
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ł	$\begin{array}{c} -B/a_1 \\ K_1/a_1 \end{array}$	2 · 35008 4 · 35969	$1 \cdot 84721 \\ 4 \cdot 28751$	$1 \cdot 34433 \\ 4 \cdot 21530$	$\cdot 84145 \\ 4 \cdot 14311$	$\cdot 33857$ $4 \cdot 07091$
$ \frac{q}{\mu} \qquad 0 \qquad \frac{1}{4} \qquad \frac{1}{2} \qquad \frac{3}{4} \\ \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{3}{4} \\ \frac{1}{2} \qquad \frac{1}{2} \qquad$	·• . •	0	$\frac{-B/a_1}{K_1/a_1}$	$2 \cdot 00031 \\ 4 \cdot 10667$	$1 \cdot 50024 \\ 4 \cdot 10667$	$1 \cdot 00016 \\ 4 \cdot 10667$	·50000 4·10667	·00000 4·10667
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		g/#		0	1	<u>1</u> 2	3 4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	$-\frac{B/\Omega_1}{K_1/\Omega_1}$	2 · 15152 1 · 06170	$2 \cdot 44919$ 1 · 97961	$2 \cdot 74686 \\ 2 \cdot 89752$	$3 \cdot 04453$ $3 \cdot 81543$	$3 \cdot 34219 \\ 4 \cdot 73334$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34	$-B/\Omega_1 \\ K_1/\Omega_1$	2.09128 .82737	$2 \cdot 32799$ 1 · 78935	$2 \cdot 56470 \\ 2 \cdot 75133$	$2 \cdot 80141 \\ 3 \cdot 61331$	$3 \cdot 03816 \\ 4 \cdot 67530$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2_1 > a_1$	1 <u>1</u>	$-B/\mathbf{\Omega}_1 \\ K_1/\Omega_1$	$2 \cdot 04302 \\ \cdot 56679$	$2 \cdot 20746 \\ 1 \cdot 56147$	$2 \cdot 37190 \\ 2 \cdot 55615$	$2 \cdot 53634 \\ 3 \cdot 55083$	$2 \cdot 70078$ $4 \cdot 54551$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	1 <u>4</u>	$-B/\Omega_1 \\ K_1/\Omega_1$	2.01151 .28878	$2 \cdot 09616 \\ 1 \cdot 30651$	$2 \cdot 18080 \\ 2 \cdot 32424$	$2 \cdot 25546 \\ 3 \cdot 34197$	$2 \cdot 35008 \\ 4 \cdot 35969$
		0	$-\frac{B/\Omega_1}{K_1/\Omega_1}$	$2 \cdot 00031 \\ \cdot 00000$	$2 \cdot 00031 \\ 1 \cdot 02667$	$2 \cdot 00031 \\ 2 \cdot 05334$	$2 \cdot 00031 \\ 3 \cdot 08001$	$2 \cdot 00031 \\ 4 \cdot 10667$

Now for each case (i) $\Omega_0 \leq a_0$ and (ii) $\Omega_0 \geq a_0$ two more sub-cases arise according as $\Omega_1 \leq a_1$ or $\Omega_1 \geq a_1$. When $\Omega_1 \leq a_1$ the ratio $\Omega_1/a_1 = \lambda$ whereas for the other case $a_1/\Omega_1 = \mu$.

The numerical values of the constants B and K_1 , for the two cases (i) $\Omega_0 < a_0$ and (ii), $\Omega_0 \ge a_0$ are given in the Tables 3 and 4.

For general values of ω we may write

$$F_{1}(\eta) = F_{2}(\eta) + i\omega F_{3}(\eta)$$

$$G_{1}(\eta) = G_{2}(\eta) + i\omega G_{3}(\eta)$$

$$H_{1}(\eta) = H_{2}(\eta) + i\omega H_{3}(\eta)$$

$$(36)$$

Substituting (36) into (22), (18) and (20) and noting that F_2 , G_2 and H_2 are the solutions of these equations for $\omega = 0$, we get

14

÷.

TABLE 4

NUMERICAL VALUES OF THE CONSTANTS B and K_1 for case (ii) $\Omega_0 \geqslant a_0$

$$p = a_0 / \Omega_0$$
, $\lambda = \Omega_1 / a_1$, $\mu = a_1 / \Omega_1$

		and the second		1 - C C C C C C C C	e destru	
	al de la companya de La companya de la comp Se companya de la comp	1	<u>3</u>	1	• ‡	0
Q	$\frac{-B/a_1}{K_1/a_1}$	$4 \cdot 27127$ $2 \cdot 59311$	3 · 47299 1 · 88743	$2 \cdot 67471 \\ 1 \cdot 18172$	1 · 87643 · 47603	1 · 07815 • 22967
	$\frac{-B/a_1}{K_1/a_1}$	$4 \cdot 68991 \\ 4 \cdot 07045$	$3 \cdot 99704 \\ 3 \cdot 48884$	3·30420 2·90723	$2 \cdot 61134$ $2 \cdot 32562$	$1 \cdot 91849 \\ 1 \cdot 74401$
$\Omega_1 \leq a_1^{-\frac{1}{2}}$	$\begin{array}{c}B/a_1 \\ K_1/a_1 \end{array}$	$4 \cdot 18853 \\ 4 \cdot 63352$	$3 \cdot 58351 \\ 4 \cdot 19671$	$2 \cdot 97849 \\ 3 \cdot 75993$	$2 \cdot 37347$ $3 \cdot 32313$	$1 \cdot 76845$ $2 \cdot 88634$
å .	$\frac{-B/a_1}{K_1/a_1}$	$3 \cdot 70380 \\ 4 \cdot 76908$	$3 \cdot 14304 \\ 4 \cdot 43414$	$2 \cdot 58231 \\ 4 \cdot 09919$	2 · 02156 3 · 76424	$1 \cdot 46082 \\ 3 \cdot 42929$
1	$\frac{B/a_1}{K_1/a_1}$	$3 \cdot 34219 \\ 4 \cdot 73324$	$2 \cdot 80431 \\ 4 \cdot 46790$	$2 \cdot 26643 \\ 4 \cdot 20249$	$1.72855 \\ 3.93706$	1 · 19067 3 · 67164
1 1 1 1 1		0.	1	ł	<u>3</u> 4	1
0	$-\frac{B/Q_1}{K_1/Q_1}$	3 · 19312 2 · 82278	3 · 46266 2 · 76537	3·73220 2·70795	4 • 00174 2 • 65055	$4 \cdot 27127$ 2 $\cdot 59311$
na an a	$-B/\mathcal{Q}_1 \ K_1/\mathcal{Q}_1$	$2 \cdot 77142$ $2 \cdot 32644$	$3 \cdot 25104 \\ 2 \cdot 76244$	$3 \cdot 73066 \\ 3 \cdot 19844$	$4 \cdot 21028 \\ 3 \cdot 63444$	4 · 68991 4 · 07045
$ \Omega_1 \geqslant a_1 \stackrel{\frac{1}{2}}{} $	$-B/\Omega_1 \atop K_1/\Omega_1$	$2 \cdot 42008$ 1 \cdot 74718	$2 \cdot 86219 \\ 2 \cdot 46876$	3·30430 3·19035	$3 \cdot 74641 \\ 3 \cdot 91192$	$4 \cdot 18853 \\ 4 \cdot 63352$
	$-B/\Omega_1 \\ K_1/\Omega_1$	$2 \cdot 24298 \\ 1 \cdot 33979$	$2 \cdot 60819 \\ 2 \cdot 19711$	2·97339 3·05443	$3 \cdot 33861 \\ 3 \cdot 91175$	$3.70380 \\ 4.76908$
1	$-B/Q_1 K_1/Q_1$	$2 \cdot 15152 \\ 1 \cdot 06170$	$2 \cdot 44919$ 1 $\cdot 97961$	$2 \cdot 74686 \\ 2 \cdot 89752$	$3 \cdot 04453$ $3 \cdot 81543$	$3 \cdot 34219 \\ 4 \cdot 73334$

$$\left(F_{2}-a_{1}\right)+2F_{0}F_{3}-2G_{0}G_{3}+\left(H_{0}F_{3}'+H_{3}F_{0}'\right)\frac{1}{\delta}=(\nu/\delta^{2})F_{3}''$$
(37)

$$G_{2} + 2\left(F_{0}G_{3} + F_{3}G_{0}\right) + \left(H_{0}G_{3}' + H_{3}G_{0}'\right)\frac{1}{\delta} = (\nu/\delta^{2})G_{3}'' \qquad (38)$$

$$2F_3 + H_3' \frac{1}{\delta} = 0 \tag{39}$$

ĵ.

Boundary conditions on F_3 , G_3 and H_3 are

$$F_{3} = G_{3} = H_{3} = 0, \ F_{3}'' = -a_{1}\delta^{2}/\nu, \ G_{3}'' = \Omega_{1}\delta^{2}/\nu \ \text{at } \eta = 0$$

$$F_{3} = F_{3}' = F_{3}'' = 0, \ G_{3} = G_{3}' = G_{3}'' = 0 \quad \text{at } \eta = 1$$

$$\left. \right\}$$

$$(40)$$

We again solve the equations (37) to (39) under the boundary conditions (40) by Kârmân-Pohlhausen method. We assume F_3 and G_3 each to be plynomial of 5th degree and write

$$F_{3} = A\eta \left(1 - 6\eta^{2} + 8\eta^{3} - 3\eta^{4}\right) - \frac{1}{2}a_{1}\delta^{2}/\nu \left(1 - 3\eta + 3\eta^{2} - \eta^{3}\right)\eta^{2} \quad (41)$$

and

$$G_{3} = E\eta \left(1 - 6\eta^{2} + 8\eta^{3} - 3\eta^{4} \right) + \frac{1}{2} \Omega_{1} \delta^{2} / \nu \left(1 - 3\eta + 3\eta^{2} - \eta^{3} \right) \eta^{3}$$
(42)

These expressions are taken to satisfy the conditions (40). Integrating the equations (37) and (38) between the limits $\eta = 0$ to $\eta = 1$ and using (39) we get

$$-\left(\nu/\delta^{2}\right)F_{3}'\Big|_{\eta=0} = \int_{0}^{1} (F_{2} - a_{1}) d\eta - 2 \int_{0}^{1} a_{0}F_{3} d\eta + 2 \int_{0}^{1} (3F_{0}F_{3} - G_{0}G_{3}) d\eta$$
(43)

and

$$-(\nu/\delta^2) G_3'\Big|_{\eta=0} = \int_0^1 G_2 \, d\eta + 4 \int_0^1 (F_0 G_3 + F_3 G_0) \, d\eta \tag{44}$$

Substituting the expressions for $F_0, F_2, F_3, G_0, G_2, G_3$ etc. into (43) and (44) and arranging the terms we get two simultaneous algebraic equations in E and A. These equations are solved for E and A in the two cases $\Omega_0 \leq a_0$ and $\Omega_0 \geq a_0$ and the sub-cases $\Omega_1 \leq a_1$ and $\Omega_1 \geq a_1$. The numerical values of the constants E and A are given in Tables 5 and 6.

b) High Frequency

For high frequency, i.e. when ω is greater than some as yet undetermined value, the above treatment will not give a correct picture. For this case, we approximate the equations (17) and (18) by retaining terms involving ω and the derivative of the highest order. The equations (22) and (18) are then reduced to

$$i\omega (F_1 - a_1) = (\nu/\delta^2) F_1''$$

$$i\omega G_1 = (\nu/\delta^2) G_1''$$
(45)
(46)

The boundary conditions on F_1 and G_1 are

G

$$\begin{cases} F_1 = 0, & G_1 = \Omega_1 & \text{at } \eta = 0 \\ F_1 = a_1, & G_1 = 0 & \text{at } \eta = 1 \end{cases}$$

$$(47)$$

The solutions of (45) and (46) are

$$F_{1} = a_{1} \left[1 + e^{-(1+i) \left(\frac{\omega}{2\nu}\right)^{\frac{1}{2}} \delta \eta} \right]$$
(48)

$$_{1} = \Omega_{1} e^{-(1+i) \left(\frac{\omega}{2\nu}\right)^{\frac{1}{2}} \delta \eta}$$
(49)

and

This solution shows that in the higher frequency range the velocity components within the boundary layer oscillate with respect to z also due to viscosity and remain unaffected by the mean flow,

DEF. SOI. J., VOL. 20, JANUABY 1970

TABLE 5

Numerical values of the constants E and A for case (i) $\Omega_0\leqslant a_0$

 $q = \Omega_0 / a_0, \quad \lambda = \Omega_1 / a_1, \quad \mu = a_1 / \Omega_1$

	<i>, , , , , , , , , ,</i>	and the second		ta a secondaria de la composición de la		1
q X		1	<u>3</u>	1	1	0
		• 52607	. 96990	.10850	.02479	. 19007
	Å '	· 43434	·47309	·51182	• 55057	•58930
1	— <i>E'</i> <i>A'</i>	•58 3 88 •43716	• 40895 • 46923	•23412 •50128	•05919 •53336	·11564 ·56536
$\Omega_1 \leq a_1^{-\frac{1}{2}}$	<u>E</u> ' 4'	•64780	• 46405	· 28031	• 09656	
	A	.40109	*4/402	•49100	• 02040	• 04340
ania Aria t	E' A'	•71191 •47904	•52210 •49107	• 33229 • 50310	• 14247 • 51514	
0	—E' A'	• 76885 • 52085	• 57663 • 52085	· 38442 · 52085	• 19222 • 52085	• 00000 • 52085
8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	where $E' = E a_0$	a_1 and $A' =$	A a. / a.			
,q/µ		0	1	ł	3 4	1
1	<u>E</u> ″	·65514	· 62287	· 59059	• 55833	· 52607
	A "	-· 15496	•00764	·13969	•28701	·43434
, ₽	E" A"	·69952 —·12826	•67062 •01310	•64172 •15446	•61728 •31695	•58388 •43716
$a_1 \ge a_1$	— <u>E</u> " A"	·73497 ·09177	•71317 •04409	·69138 ·17995	•66959 •31582	·64780 ·45168
1	E " A"	$\begin{array}{r} \cdot 75924 \\ - \cdot 04814 \end{array}$	•74740 •08366	·73556 ·21545	$\cdot 72567 \\ \cdot 34716$	•71191 •47904
0 0	E" A "	•76885 •00000	• 76885 • 13021	• 76885 • 26043	• 768 8 5 • 39063	• 76885 • 52085
and the second			and the second		2	

where $E'' = E a_0/\Omega_1$ and $A'' = Aa_0/\Omega_1$

CHOPRA & GHILDYAL : Interaction of Oscillatory Flow with Rotating Lamina

TABLE 6

NUMERICAL VALUES OF THE CONSTANTS E AND A FOR CASE (ii) $\Omega_0 \geqslant a_0$

 $p = a_0 | \Omega_0, \lambda = \Omega_1 | a_1, \mu = a_1 | \Omega_1$

			1. 	· · · · · · · · · · · · · · · · · · ·		
p/X		1	<u>3</u> 4	1	1	0
0	$-\overline{E'}$ $\overline{A'}$	2 · 89553 2 · 53842	2•60168 2•67312	2·30986 2·81582	2·01403 2·95452	1 • 72020 3 • 09322
t	<u>Ē</u> ' <u>Ā</u> '	$1 \cdot 25698 \\ 1 \cdot 61571$	·98685 1·75420	•71651 1•89266	·44628 2·03104	•17605 2•16960
$\Omega_1 \leqslant a_1^{-\frac{1}{2}}$	$\frac{-\overline{E'}}{\overline{A'}}$	•77454 •90000	• 53677 • 99410	·29922 1·08819	·06157 1·18228	
	$\frac{-\bar{E'}}{\bar{A'}}$	· 61704 · 58374	· 41909 · 64336	•22116 •70299	•02322 •76264	
1	$-\overline{E'}$ $\overline{A'}$	· 52607 · 43434	• 36229 • 47306	· 19850 · 51182	•03472 •55057	
	where	$\overline{E}' = E \mathcal{Q}_0 a_1$	and A' =	A Q0 a2		
p/ #	•	0	t	12	84	1
0	- <u>Ē</u> " Ā"	$1 \cdot 17557 \\ - \cdot 55480$	1 · 60538 · 21849	2·03647 ·99181	2·46548 1·76510	2 • 89 553 2 • 53842
t	— <u>Ē</u> " Ā "	1.08093 	1 • 12495 •01150	$1 \cdot 16895 \\ \cdot 53091$	$1 \cdot 21299$ $1 \cdot 07232$	1 • 25698 1 • 61571
$\Omega_1 \geqslant a_1^{-\frac{1}{2}}$	$\frac{\overline{E''}}{\overline{A''}}$	0·95064 	· 90662 · 05727	· 86259 · 26181	·81858 ·58091	•77455 •90000
2000 - 2000 - 2000 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000	$-\overline{\vec{E''}}$	·79178 	·74804 ·03299	· 70440 · 17259	• 66071 • 37815	• 61704 • 68374
	$-\overline{E''_{A''}}$	·65513 	·62287	· 59059 · 13969	• 5583 3 • 28701	• 52607 • 43434

where $\overline{E}^* = E \Omega_0 / \Omega_1$ and $\overline{A}^* = A \Omega_0 / \Omega_1$

DISCUSSION

The expressions for the skin-friction at the wall in the radial and azimuthal directions are given by

$$\overline{\mu}\left(\frac{\partial u}{\partial z}\right)_0$$
 and $\overline{\mu}=\left(\frac{\partial v}{\partial z}\right)_0$

In the case of high frequency they may be written as

$$\bar{\mu}(r/\delta)\left[c_{1}+\sqrt{\frac{\omega}{2\nu}}\,\delta a_{1}(1+i)\,e^{i\omega t}\right]$$
(50)

$$-\bar{\mu}(r/\delta)\left[2\Omega_{0}+\sqrt{\frac{\omega}{2\nu}}\ \delta\Omega_{1}(1+i)e^{iwt}\right]$$
(51)

and

The amplitude of the fluctuation increases with ω and its phase is ahead of the fluctuation of the main stream by 45° in both the directions. In the case of low frequency, expressions for the skin friction in the two directions are :

$$\overline{\mu}(r/\delta)\left[c_1+(K_1+iA\omega)e^{iwt}\right]$$
(52)

and

$$-\overline{\mu}(r/\delta)\left[2\Omega_{0}-(B_{1}+iE\omega)e^{iwt}\right]$$
(53)

The skin friction, in the radial and azimuthal direction, has phase lead of $\tan^{-1} (A\omega/K_1)$ and $\tan^{-1} (E\omega/B)$ respectively over the oscillation of the main flow. The phase lead increases with ω and becomes 45° for $\omega = \omega_R = K_1/A$ and $\omega = \omega_A = B/E$ where ω_R and ω_A are the frequencies in the radial and azimuthal directions. Such values of the frequencies ω_R and ω_A for the two cases (i) $\Omega_0 \leq a_0$ and (ii) $\Omega_0 \geq a_0$ and sub-cases $\Omega_1 \leq \alpha_1$ and $\Omega_1 \geq \alpha_1$ can easily be determined. When $\Omega_1 \leq \alpha_1$ we can write

$$\omega_R = rac{K_1/a_1}{A/a_1} ext{ and } \omega_A = rac{B/a_1}{E/a_1}$$

and when $\Omega_1 \ge a_1$ we put

$$\omega_R = rac{K_1/\Omega_1}{A/\Omega_1} ext{ and } \omega_A = rac{B/\Omega_1}{E/\Omega_1}$$

Putting the values of the constants K_1 , A, B and E for different values of q and p and for λ and μ we determine values of the frequencies ω_R and ω_A given in Tables 7 and 8.

CHOPBA & GHILDFAL : Interaction of Oscillatory Flow with Rotating Lamina

TABLE 7

v	ALTTES	OF	TRANSITION.	AL FREQU	ENCIES W/	AND	WA FOR	220	E	an
		0.2	THUTTOT					· · ·	_	

وی استان از این محمد با محمد این محمد با محمد این این این	<i>q</i> =	$= \Omega_{\bullet} / \alpha_{0}, \lambda = 1$	$\Omega_1/a_1, \ \alpha =$	$=a_1/\Omega_1$	and a second	n Na na wata na manana na manana Na manana na mana na m
} g∖		1	3	12	4	0
i,	$\omega R/a_0 \ \omega A/a_0$	$ \begin{array}{r} 10 \cdot 89778 \\ 6 \cdot 35313 \end{array} $	9 · 44408 7 · 74051	8·21087 11·41778	7·15088	6·23051
	$\omega R/a_0 \ \omega A/a_0$	$\begin{array}{c} 10 \cdot 68835 \\ 5 \cdot 20340 \end{array}$	$9 \cdot 52294 \\ 6 \cdot 15073$	$8 \cdot 50150 \\ 8 \cdot 51068$	$7 \cdot 60231$ $24 \cdot 8302$	6.80616
$\Omega_1 \leqslant a_1^{-\frac{1}{2}}$	$\omega R/a_0 \omega A/a_0$	$10 \cdot 06356 \\ 4 \cdot 16916$	$9 \cdot 27860 \\ 4 \cdot 71934$	8·56619 5·99076	$7 \cdot 91875 \\ 12 \cdot 10138$	7.32123
4	$\omega R/a_{0} \ \omega A/a_{0}$	9 · 10089 3 · 30109	$8 \cdot 73095 \\ 3 \cdot 53804$	$8 \cdot 37865 \\ 4 \cdot 04564$	$8 \cdot 04269 \\ 5 \cdot 90620$	7 • 72205
0	$\omega R/a_0 \ \omega A/a_0$	$7 \cdot 88455 \\ 2 \cdot 60170$	$7 \cdot 88455 \\ 2 \cdot 60170$	$7 \cdot 88455 \\ 2 \cdot 60170$	∽ •88455 2•60170	7·88455
		0	1	1 1 2	<u>3</u> 4	1
1	$\omega R/a_0 \ \omega A/a_0$	3.28406	3 ·93210	20·74250 4·57353	$13 \cdot 29372 \\ 5 \cdot 45292$	10.89778 6.35313
2	$\omega R/a_0 \ \omega A/a_0$	2 ·98959	3.47140	17·81257 3·99660	$11 \cdot 40025 \\ 4 \cdot 53831$	$10.68835 \\ 5.20340$
$\Omega_1 \geqslant a_1^{-rac{1}{2}}$	$\omega R/a_0 \ \omega A/a_0$	2.77973	3·09528	$14 \cdot 20478 \\ 3 \cdot 43067$	$11 \cdot 24321 \\ 3 \cdot 78790$	$10.06356 \\ 4.16916$
	$ωR/a_0$ $ωA/a_0$	2.64937	$15 \cdot 61690 \\ 2 \cdot 80460$	10.78784 2.96482	$9 \cdot 62660 \\ 3 \cdot 10811$	9 · 10089 3 · 30109
0	$\omega R/a_0 \ \omega A/a_0$	2.60170	$7 \cdot 88455$ $2 \cdot 60170$	$7 \cdot 88455$ $2 \cdot 60170$	$7 \cdot 88455 \\ 2 \cdot 60170$	$7 \cdot 88455$ $2 \cdot 60170$

Dashes (-) represent cases in which smooth transition does not take place.

For these tabulated values of ω_R and ω_A we find that the amplitudes of the oscillation in both the asymptotic cases of high and low frequency are approximately the same. Both the phase and amplitude of the skin-friction fluctuations (high as well as low frequency) are in agreement with these values of ω_R and ω_A . Hence they may reasonably be taken as the values at which transition from one type of flow to the other occurs. The dashes in Tables 7 and 8 represent those cases in which smooth transition does not take place.

In the presence of rotation the numerical results given in Table 7 ($\Omega_1 \leq a_1$) show that there exists a value of ω at which the smooth transition from the low to high frequency

TABLE 8

Values of Thansitional frequencies ω_R and ω_A for $\Omega_0 \geqslant a_0$

	P		1	34	1/2	4	0
	0	ω <i>R/Ω</i> ο ω <i>Α/</i> Ωο	1.02154	·70608		· · · · · · · · · · · · · · · · · · ·	_
•	1 - · ·	$\omega R/\Omega_{ullet}$ $\omega A/\Omega_{ullet}$	2·51929 3·73109	$1 \cdot 98885 \\ 4 \cdot 05030$	1·53606	1.14504	· 80384
$\Omega_1 \leqslant a_1$	1	$\omega R/\mathcal{Q}_{0}$ $\omega A/\mathcal{Q}_{0}$	4 · 14836 5 · 40776	$4 \cdot 22162 \\ 6 \cdot 67606$	3·45521 9·95418	2.81078	2·26135
	ž	$\omega R/\mathcal{Q}_{0} \omega A/\mathcal{Q}_{0}$	8·17001 5·96387	$6 \cdot 89216$ 7 \cdot 49968	$5 \cdot 83108$ 11 · 67621	4·93580	4.17047
	*1	ယ R/Ω_{0} ယ A/Ω_{0}	10•89778 6•35313	9·44451 7·74051	8·21087 11·41778	7.15088	6·23038
	s /µ	<u>en <u>"</u></u>	0	14.	12	<u></u>	1
	0	ω ^R /Ω₀ ωΑ/Ω₀		2·15691	1.83268	$1 \cdot 50164 \\ 1 \cdot 62311$	1·02154
	ł	$\omega R/ {oldsymbol \Omega}_0 \ \omega A/ {oldsymbol \Omega}_0$	2.56392	2.88994	3.19146	3.47099	2·51929 3·73109
$\Omega_1 \geqslant a_1$	1 1 2	$\omega R/\Omega_0 \ \omega A/\Omega_0$	2.54574	3.15699	$\begin{array}{r} 12 \cdot 18575 \\ 3 \cdot 83067 \end{array}$	6·73412 4·57672	5·14836 5·40776
	4	ω <i>R/Ω</i> 0 ω <i>Α/Ω</i> 0	2.83283	3 · 48651	$17 \cdot 69761 \\ 4 \cdot 22111$	$\begin{array}{c} 10 \cdot 34444 \\ 5 \cdot 05306 \end{array}$	8 · 17001 5 · 96387
	1	ພ $R/{m \Omega_0}$ ພ $A/{m \Omega_0}$	3.28406	3.93214	$20 \cdot 74207 \\ 4 \cdot 65099$	$13 \cdot 29483 \\ 5 \cdot 45305$	$\begin{array}{r} 10 \cdot 89778 \\ 6 \cdot 35313 \end{array}$

 $p = a_0 / \Omega_0, \lambda = \Omega_1 / a_1, \mu = a_1 / \Omega_1$

Dashes (---) represent cases in which smooth transition does not take place.

solution takes place in the radial direction but not in the azimuthal direction for lower values of λ . It is because the axial flow dominates the circumferential flow. Again in Table 7 $(\Omega_1 \ge a_1)$ there is a smooth transition in the azimuthal direction whereas in the radial direction, this is not the case. The reason is that the secondary circumferential flow induces a flow along the axis of rotation directed towards the plate. This flow is responsible for creating instability in the radial direction. We, therefore, do not get values of ω_A for smaller values of μ at which low frequency solution agrees with the high frequency solution. For $\Omega_0 = 0$ i.e. the absence of the mean rotational flow, the values of ω_B and ω_A are independent of either λ or μ .

When Ω_1 is very small as compared to a_1 , this procedure of obtaining the transition from the low to high frequency solution cannot be adopted in the circumferential direction.

CHOPBA & GHILDYAL : Interaction of Oscillatory Flow with Rotating Lamina

Similarly when a_1 is very small as compared to Ω_1 , we do not get smooth transition in the radial direction. The high frequency solution given by (48) and (49) also indicates that for the two extreme cases $\Omega_1 << a_1$ and $a_1 << \Omega_1$ smooth transition cannot occur. This approximation gives fairly good results for transition when λ and μ are comparable to each other.

In both the parts of Table 8, we observe that when Ω_0 the mean circumferential flow, dominates the axial flow, there is almost no smooth transition specially when $a_0 \approx 0$ or $p \approx 0$. It is again due to the instability caused by the rotation in the flow field. The numerical results given in the first part show that the low and high frequency solutions do not overlap for smaller values of λ in the azimuthal direction. In this case the unsteady part of the rotational velocity is small as compared to that of the axial velocity. When $\Omega_0 \leq a_0$ and $\Omega_1 \leq a_1$ rotational flow dominates the axial flow, we get smooth transition in the azimuthal direction but there is no transition in the radial direction for lower values of μ due to the rotation of the disk which acts as centrifugal fan (see second part of Table 8).

In general whenever the mean or the secondary circumferential flow dominates the mean or the secondary axial flow, it creates an instability in the axial direction. This will be responsible for not giving good results for the values of the frequency at which smooth transition may take place.

FEW PARTICULAR CASES

(i) q = 0, $\lambda = 0$ give $\Omega_0 = \Omega_1 = 0$. This case can be interpreted as "unsteady flow in the neighbourhood of an axi-symmetric stagnation point". Srivastava¹⁹ who studied this flow has obtained the value $\omega_R = 8.0846 a_0$ at which the transition of one type of flow to the other occurs. Whereas from our solution, the value of this frequency is $7.88455a_0$.

(ii) When the mean flow is absent (i.e., $a_0 = 0$, $\Omega_0 = 0$,) the low frequency solution does not exist. The high frequency solution is valid for all values of the frequency. This case can be interpreted as "torsional oscillations of a disk in a pulsating stream". In the absence of the pulsating stream i.e., $a_1 = 0$, we get the problem of the torsional oscillations of a disk in a fluid at rest. Our solution in the later case is the first order approximation of that obtained by Rosenblat²³. When $\Omega_1 = 0$, we get the flow of the pulsating stream past a fixed lamina.

ACKNOWLEDGEMENTS ^a

The authors are grateful to Dr. R. R. Aggarwal, Asstt. Director, for valuable suggestions regarding this work and to the Director, Defence Science Laboratory, Delhi for the permission of its publication. Thanks are also due to Shri Shibhu Ram for his assistance in the numerical computation.

REFERENCES

- 1. LIGHTHILL, M. J., The Response of Laminar Skin Friction and Heat Transfer to Fluctuations in the Stream Velocity, Proc. Roy. Soc., A224 (1954), 1.
- STUART, J. T., A Solution of the Navier-Stokes and Energy Equations Illustrating the Response of Skin Friction and Temperature of an Infinite Plate Thermometer Fluctuations in the Stream Velocity, Proc. Roy. Soc., A231 (1955), 116.

- 3. GLAUEBT, M. B., The Laminar Boundary on Oscillating Plates and Cylinders, J. Fluid Mech., 1 (1956), 97.
- 4. ROTT, N., Unsteady Viscous Flow in the Vicinity of a Stagnation Point, Quart. Appl. Math., 13 (1956), 444.
- WATSON, J., A Solution of the Navier-Stokes Equations Illustrating the Response of the Laminar Boundary Layer to a Given Change in the External Stream Velocity, Quart. J. Mech. Appl. Math., 11 (1958), 302.
- GLAUBET, M. B. & LIGHTHILL, M. J., The Axisymmetric Boundary Layer on a Long Thin Cylinder, Proc. Roy Soc., A280 (1955), 188.
- 7. WATSON, J., The Two Dimensional Laminar Flow near the Stagnation Point of a Cylinder Which has an Arbitrary Transverse Motion, Quart. J. Mech Appl. Math., 12 (1959), 175.
- 8. ROTT, N. & ROSENWEIG, M.L., On the Response of the Laminar Boundary Layer to Small Fluctuations in the Free Stream Velocity, J. Aerospace Sci., 27 (1960), 741.
- 9. MOORD, F. K., The Unsteady Laminar Boundary Layer of a Wedge and a Related Three Dimensional Problem. Proc. Heat Transfer & Fluid Mechanics Institute (Stanford University Press, Stanford, Calif) 1957; p. 99.
- REDDY, K. C., Fluctuating Flow Past a Porous Infinite Flat Plate in a Slip Flow Regime, Quart. J. Mech. Appl. Math., 17 (164), 381.
- 11. KELLEY, R. E., The Flow of a Viscous Fluid Past a Wall of Infinite Extent with Time Dependent Suction, Quart. J. Mech. Appl. Math., 18 (1965), 287.
- MESSIHA S. A. S., Laminar Boundary Layer in Oscillating Flow Along an Infinite Plate with Variable Suction, Proc. Camb. Phil. Soc., 62, 2 (1966), 329.
- KING, W. S., "Low Frequency, Large Amplitude Fluctuations of the Laminar Boundary Layer", (Aerospace Corp. El Segundo, Calif.) TDR-469 (524-10)—14 (June 1965).
- ¹4. KING, W. S., Low Frequency, Large Amplitude Fluctuotions of the Laminar Boundary Layer, AIAA, 6 (1966), 994.
- 15. Rort, N., "Theory of Laminar Flows" (Princeton University Press, Princeton N.J.), 1964, p. 395.
- YEH, H. C. & YANG, W. J., Unsteady Boundary Layers on Vibrating Spheres in a Uniform Stream, Phys., Fluids, 8 (1965), 806.
- 17. RILEY, N., On a Sphere Oscillating in a Viscous Fluid, Quart. J. Mech. Appl. Math., 19 (1966).
- LIN, C. C., "Motion in the Boundary Layer with a Rapidly Oscillating External Flow", (Ninth Internat. Cong. Appl. Mech., Brussels) 1957, p. 155.
- SRIVASTAVA, A. C., Note on Fluctuating Flow Near a Stagnation Point, J. Fluid Mech., 20 (3), (1964) p. 411.
- SCHLICHTING, H. & TEUCKENBRODT, E., Die Stromung an einer angeblasenen rotierenden Scheibe, ZAMM, 32 (1952), 97.
- 21. HANNAH, D. M., "Forced Flow Against a Rotating Disc," ARC R & M, 2772 (1952).
- TIFFORD, A. N. & CHU, S. T., On the Flow around a Rotating Disc in a Uniform Stream., J. Aero. Sc. 19 (1952), 284.
- 23. ROSENBLAT, S., Torsional Oscillations of a Plane in a Viscous Fluid, J. Fluid Mech., 6 (1959), 206.
- 24. BENNEY, D. J., The Flow Induced by a Disk Oscillating in its Own Plane., J. Fluid Mech., 18 (1964), 385
- BENNEY, D. J., The Flow Induced by a Disk Oscillating about a State of Steady Rotation, Quart. J. Mech. Appl. Math., 18 (1965), 333.