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A study of compression waves produced in water by the non-uniform expansion of a ¢ylindrical
piston of non-zero initial radius is made by the artificial viscosity method of von Neumann &
Richtmyer. It is found that the damping effect introduced by the cylindrical geometry is
much less pronounced than that of the sphencal geometry. ]

In the present paper, we have studied compression waves produced in water by the
expansion of a cylindrical piston. If the piston expands with uniform speed and its initial
radius is zero, then the motion is self-similar and the solution of this problem can be easily
found out by the numerical integration of ordinary differential equations following
Taylor!. Lighthill? has discussed this problem for small mach number of the piston and
has deduced that the strength of the shock, which forms the wave front, is of the order of
the fourth power of the piston mach number. When the expansion of the piston is not
unifor;n or the initial radius of the piston is non-zero, the fluid motion is not self-si:nilar and
in this case we can solve the proble:n only by the numerical integration of partial differential
equations. Since we wish to take non-uniform expansion speed and ron-zero iritial radius
of the piston, we have utilised the well-known artificial viscosity method of von Neumann
& Richtmyer®. It has been shown in reference (5 referred to as paper 1 in the sequel), that
artificial viscosity term of von Neumann & Richtmyer® can be used even if the medium is
water though the thickness of the transition region depends on shock strength. In paper 1,
the corresponding spherical piston problem has been discussed ir detail. ;

EQUATION OF MOTION ; N
We have used bere the rotations of von Neumarn & Richtx yer® with the difference

that X and  represeut Euleriar and Lagrangian distances respectively from the axisof =

the cylinder. We assume the path of the piston to be given by the hyperbola
X=X+ L)1 e
where m, represents the final asymptotic speed of the piston, 1 /\/jm 18 the time

required by the piston to attain half of the final asyrnptotlc speed and X' is the initial
‘radius of the piston.

The equations governing the ﬂow with cyhnd.nca.l symmetry in Lagrangian coordis
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¥ = T for water and with the artificial vxscosxty term
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We non-dlmensmnahse the set of equatmns (2) to (6) Wlth the help of the undlsturbed state
values p,, pp, @, of pressure, density, sound speed and a characteristic length
-equal to the distance travelled by the sound wave in umt time and write the correspondmg -

. system of d.lfference equations.
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From (1 ) we dbtain the nop-diménsiona,l velocity of the position

-
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Up= —— 5 (12)
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The initial and boundary conditions are ’
-3 -t o . 9 :
U =04g,,=0 X= '0+5A”’p3+&=1’ Vg =1 (13)
for 1=0,1,2 . cuuun |
and '
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In (7) to (14), the bar used for non-dimensional variables has been dropped from the flow
variables, but the non-dimensional parameters carry the bars.

;

DISCUSSION AND RESULTS

\

We have carried out the computations with the following values of the constants and:
mesh size : ' \

¢ =27 =18 =3000,4" = 3001, Az = 0:00001,

_ - At Total time up to

Piston Cage X, m, which result
is obtained
Cylindrical Piston L 0-0001°  0-28601 10000 0-4 +0006
L . ) 2. - 0:0001 0-97212 30000 01 +00028
sSpherical Piston® 3. 0-0001 0-97212 -30000 015 +00011
4. 0-15 0002

0-001 097212 © 15000

1

*These results have been taken from paper 1 for comparison (see reference 5)e
4 <

Figs. 1, 2 and 3 show the distribution of velocity, pressure, specific volume and Eulerian
distance versus Lagrangian distrance at different cycles of time. In Fig. 1, we observe that
the velocity at a fixed time is greatest at the piston and it decreases as we move towards
the shock front and ultimately it falls down to its zero value ahead of the shock. The
velocity at the piston increases with increasing number of time cycles and it tends to its.

- asymptotic valuem, ultimately. It is worthy of notice that only in ease 1 velocity-Lagran-
gian distance curves (for a fixed time) are convex with respect to « axis after a certain time,
This feature is nowhere present in the spherical case discussed in earlier papers We remark .
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Fig. 1.—Velocity versus Lagrangian distance
for various cycles of time,

© PRESSURE in 10

DEr. Sen. J. ch 20, Jmmv 1956 -

here that after a verylon g time, when the shock
has travelled through a distance large compar-
ed to the initial radins the flow tends to be- -

come self-similar’. The shock strength in
case 1 is very small compared to other cases

due to low piston velocity m,.

In Fig. 2, we observe that the pressure
at a fixed time is greatest at the piston and it
gradually decreases as we move towards the
shock front and ultimately it falls down to its
value 1 of the undisturbed state. The choice
of our scale for pressure gives an illusion that
the pressure curves end on p = 0;in fact
they end on the line p = 1. Further we find
that the pressure at the piston increases up
to a certain time and thereafter it shows a
decrease with time. It is also evident from
Fig. 2 that pressure gradient throughout
the wave region decreases with the “increase
of time and in case 1, the pressure curve

x 18 almost a straight line at n = 150.
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" Fig, 2—(a) Specific Volume vergus' Lagrangian distance at various cycles of time.

" (b) Pressure versus Lagrangian distance at various cycles of time.
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. Fig. 8—Eulerian distance versus Lagrangian distance at various oycles of time.

Cases 2 and 3 bring out the difference in the flow pattern due to cylindrical and

«

spherical geometry since X'y, m,, m are same in the both cases. Comparing the curves of
case 3 at the cycle 40 with that at cyle 60 of case 2 (cylindrical piston), we find that the
velocity distribution given by the spherical motion behind the shock at each point except
" at the piston is less than that given by the cylindrical motion and similarly the pressure
in case 3 is everywhere small compared. to that in case 2 (even at the piston), though
both pistons have started with sa:ue initial radii and have moved for the same time with
same acceleration. This brings out the faot that the damping effect of sphericity is stronger
than that of the cylindrical geometry.

The upper part of Fig. 2 shows the distribution of the specific volume at various eycles
and supports the above observations regarding pressure distribution as expected from the
equation 5. - \

In cases 1, 2, 3 and 4 the shock has travelled about 6-5, 5:3, 1-5 and 0-27 times the
initial piston radius respectively at the last oycle (i.e. n = 150, 280, 60, 100) in each case.
This shows that the effect of cylindrical and spherical geometry has been fully taken into
account in the first three cases whereas in the fourth case the shock has not travelled suffi-
ciently far to show full effect of spherical geometry. Therefore, we may compare the results
of the case 4 at n = 100 with those of case 2at n = 90. We find that though the piston
velocity in case 2 is slightly greater than that in case 4, the shock is stronger in case 4.

Fig. 3 shows the relation between Eulerian and Lagrangian distances and we find
that after 150 and 280 cycles the radii of the piston in cases 1 and 2 have increased. to 2+2
and 3-4 times the initial radii respectively. Further, we find that at a fixed time the dis-
turbance due to cylindrical piston traverses a longer distance than that due to the spherical
piston, the initial radii of both the eylindrical and spherical pistons being the same.
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