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Abstract. The steady axisymmetric flow of an incompressible second-order fluid 
past a sphere at  rest is considered by the method of Blasius with a potential flow 
in the main stream. The first four terms of the series are obtained by Meksyn's 
method. The position of the separation ring is calculated for various values of 
the second-order parameters. The position of the separation ring for the New- 
tonian case agrees very nearly with that obtained by Schlichting who used exact 
values of the first four terms of the series. The effect of second-order parameters 
on the position of the separation ring is to  advance it towards the forward stag- 
nation point. 

1. Introduction 

The solutions of problems of engineering interest in the flow of visco-elastic fluids 
require a good understanding of the behaviour of such fluids under a variety of 
circumstances. The present paper is concerned with the steady boundary layer flow 
of an incompressible second-order fluid past a sphere. An incompressible second- 
order fluid proposed by Coleman & Nolll describes qualitatively correct behaviour 
of many fluids under retarded motions. The rectangular cartesian components of the 
Cauchy stress T i j  and the fluid motion, in such a fluid, are assumed to be related as 
follows : 

.I) 

'ij ' - P hj  + Pl A,,)lj + ~3 f I* A(l)a A:, (1) 

where 

A(l)ij = Vi, j V j 9 i  

and 

~ ( ~ ) i ~  = aiyj + aj,i + vmY j 
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The vr and at are the components of the velocity and acceleration vectors respectively. - 
The p is a constitutively indeterminate pressure which differs, in general, from the 
mean pressure p = - 4 (T,, + v1.2 + T ~ ~ ) ,  and p,, p2, p3 are material constants. The 
case pe = f i  = 0 corresponds to an incompressible Newtonian fluid. On thermo- 
dynamic considerations p2 is found to be negative. These material constants 
have been determined experimentally for solutions of poly-isobutylene in cetane of 
various concentrations by Markovitz & Brown. 

The above flow problem is solved by the method of expansion of flow 
functions in series and assuming the potential flow in the main stream. The 
first four terms of the series are obtained by the method used by Meksyn3. The 
position of the separation ring on the sphere is calculated for various values of 
the second-order parameters. For the case of Newtonian fluid, the position of the 
separation ring is found to be at 109.2'. Schlichting4 calculated the position of 
the separation ring on the sphere for the Newtonian fluid by the method of series 
expansion and on the assumption of potential flow in, the main stream. Using the 
numerically exact values of the first four terms of the series, he calculated the 
position of the separation ring at 109.4". The corresponding value obtained by us 
is in good agreement with this value. Hence, we can assume that the other values 
for different second-order parameters are fairly correct. 

2. Boundary Layer Equations 

Consider a steady axisymmetric flow of an incompressible second-order fluid with 
velocity U ,  at infinity past a sphere of radius a. Assume that the velocity of the 
fluid in the main stream is given by 

u = U ,  sin B (3) 

where 9 is the angle at the centre of the sphere measured from the axis of symmetry. 
Let x and z denote the distances measured along and perpendicular respectively to 
the surface of the sphere, so that x = ag. Let u and w denote the velocity compo- 
nents along x and z respectively. The equations of continuity and motion are given 

by 

au aw I 
a 7  + z + y ucot (s) = 0 
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1 where VI = - pry i = 1. 2, 3 and p is the density of the fluid. R = a sin 8. 
P 

The boundary conditions of the problem are 

u = O ,  w = = O  at z = O  

we assume the following expansions for u and w : 

1 2 1 1 2 - fl) 8' + (rn f, + A - f 3  + 9x fl) 9 + ...I 
(7) 

where a dash denotes derivative w. r. t. q which is defined by 

The form (7) of u and w  satisfy the Eqn. (4) of continuity. The boundary conditions 
on fly fs, fs, f, etc. are 

1 1 f ; = 1 ,  f; 5 T ,  f; = -, f' = - 
3 '  at q + o o  4 (8) 

- 

Substituting the expansions of u, w  and U in the Eqn. (5) and equating the coefficients 
of like powers of 0 to zero, we obtain the following set of ordinary differential 
equations for f,, f3, fg andfi 
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where, a = "A and f3 = - va u w  . 
a "1 a v l  

3. Solutions of Equations , 

The Eqn. (9), subject to the boundary conditions (8) has been solved by Saroa6 by 
the method of series expansion followed by Laplace's method. This method has 
given sufficiently accurate results. We use this method to solve the remaining 
three equations. 
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We express the functions fr (7) in power series of q, 

where i = l , 3 , 5 , 7  ,... (13) 

This form of fi  satisfies the boundary conditions (8) at r l -  0. The other constants 
ai, bt, cr, dl, el etc. are to be determined. The Eqn. (13) are valid only for sufficiently 
small values of q. Substituting these expansions off,, f,, f7 in the Eqns. (10) to (12), 
and equating the co-efficients of different powers of q to zero, we determine the 
constants br, cf, dl, el etc. in terms of af only. The constants af are to be determined 
by using the boundary condition (8) at q -t oo. To make use of this conditions, we 
write the Eqns. (10) to (12) in the form, 

where HI (rl), i = 3, 5, 7 are the right hand sides of the Eqns. (10) to (12) respectively 
Letting 

and 

By integrating twice the Eqn. (14), we get 

This form can be evaluated by Laplace's method. The coefficients a,, a,, a, are 
given respectively by 

These integrals can be evaluated asymptotically by Laplace's method. Putting F = T, 

transforming the Eqns. (18) to (20) to the variable T and integrating in the gamma 
functions, we find, 
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where 
ks = 4, k6 = 4, k, = f 

and 
PI = Al a1 

5 F = a1 As + 2 b~ (3Al h4 + 2h2 A,)  + 12 

5 f 
f fi ha (4 + a, at) + a (er + 4a1 bt + b, at). (22) 

The Eqn. (21) determine the three unknowns a3, aj, a,. So this Eqn. (21) are in 
general divergent. We use Euler's transformation, 

where 
A am = am+, - aml, A2 am = Aam+, - A aml, ... 

To determine as, a ~ ,  a, from the Eqn. (21), we took five terms of the series and 
applied Euler's transformation once starting from third term. The value of a, has 
been taken from Saroas. The value of a,, as, a, have been determined for -a = B 
= 0 ,  0.03, 0.06 and the values have shown in Table 1. 

Table 1. Values of a', i = 1, 3, 5, 7 for different values of (a, B) 

4. Discussion 

The shearing stress to on the wall of the sphere is given by 
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The position of the separation ring can be obtained by the condition that the shear- 
ing stress to the surface must vanish there. 

For a Newtonian fluid (a=P=O), the condition that the shearing stress ro at the 
surface vanishes is given by 

where X = e2. The acceptable solution of this cubic is X = 3.632 which gives 
0 = 109.2". Thus for the Newtonian case, the separation occurs at 109.2". Schlichting 

calculated this values to be 109.6" by using the exact values f; (0), f; (0), f; (0) and 

f 30) ) .  Thus the method used is fairly correct. 

For a second-order fluid, the conditions of the vanishing the shearing stress at the 
surface for - u = p  = 0.03, - a = P = 0.06  respectively are 

Solving these cubics, the acceptable roots are respectively X=3.509 ,  X=3.271. That 
is the position of the separation ring is at e = 107.3" and e = 103.6". 

This shows that the effect of second-order terms in the constitutive equation on 
the position of the separation ring is to advance it towards the forward stagnation 
point. The second order effect is exhibited through the non-dimensional parameter 

urn P2 a = - . Thus the point of separation depends on the material constants pl'and 
a CL1 

p, and also the flow parameters U, and a. This is a peculiarity of a second-order 
fluid since the point of separation for a ~ewtoniah fluid is independent of those 
quantities. 
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