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Flow of an Incompressible Second-Order Fluid Past a Sphere
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Abstract. The steady axisymmetric flow of an incompressible second-order fluid
past a sphere at rest is considered by the method of Blasius with a potential flow
in the main stream. The first four terms of the series are obtained by Meksyn’s
method, The position of the separation ring is calculated for various values of
the second-order parameters. The position of the separation ring for the New-
tonian case agrees very nearly with that obtained by Schlichting who used exact
values of the first four terms of the series. The effect of second-order parameters
on the position of the separation ring is to advance it towards the forward stag-
nation point.

1. Introduction

The solutions of problems of engineering interest in the flow of visco-elastic fluids
require a good understanding of the behaviour of such fluids under a variety of
circumstances. The present paper is concerned with the steady boundary layer flow
of an incompressible second-order fluid past a sphere. An incompressible second-
order fluid proposed by Coleman & Noll* describes qualitatively correct behaviour
of many fluids under retarded motions. The rectangular cartesian components of the
Cauchy stress ;; and the fluid motion, in such a fluid, are assumed to be related as
follows :

Ty = - ; &y + m Ay + pe Aayy + ps Agys A i ¢))
where '

Awij = V5 -+ Vi
and

Ay = a1,; + g1 + 20y V™, J )
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The v; and g; are the components of the velocity and acceleration vectors respectively.

o~

The p is a constitutively indeterminate pressure which differs, in general, from the
mean pressure p = — } (3, + T, + Ta3), and p,, ug, pa are material constants. The
case ug = py = O corresponds to an incompressible Newtonian fluid. On thermo-
dynamic considerations p, is found to be negative. These material constants
have been determined experimentally for solutions of poly-isobutylene in cetane of
various concentrations by Markovitz & Brown.

The above flow problem is solved by the method of expansion of flow
functions in series and assuming the potential flow in the main stream. The
first four terms of the series are obtained by the method used by Meksyn®. The
position of the separation ring on the sphere is calculated for various values of
the second-order parameters. For the case of Newtonian fluid, the position of the
separation ring is found to be at 109.2°. Schlichting® calculated the position of
the separation ring on the sphere for the Newtonian fluid by the method of series
expansion and on the assumption of potential fiow in the main stream. Using the
numerically exact values of the first four terms of the series, he calculated the
position of the separation ring at 109.6°. The corresponding value obtained by us
is in good agreement with this value. Hence, we can assume that the other values
for different second-order parameters are fairly correct. :

2. Boundary Layer Equations

Consider a steady axisymmetric flow of an incompressible second-order fluid with
velocity Uy, at infinity past a sphere of radius . Assume that the velocity of the
fluid in the main stream is given by )

where ¢ is the angle at the centre of the sphere measured from the axis of symmetry.
Let x and z denote the distances measured along and perpendicular respectively to
the surface of the sphere, so that x = a§. Let u and w denote the velocity compo-

nents along x and z respectively. The equations of continuity and motion are given
by

du ow 1 X :
a—x“-f-—a-z—-f- ;ucot(;)—o 4)
ou ow .. oU Pu v, OR [(0u\?
“mt" g~ Vath iz R {(5;)
o%u 1 @R [oU\?
+2u5§}—-1’3{?5;(3—2')+
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where v = % b, i=1.2 3andp is the density of the fluid. R = a sin g.

The boundary conditions of the problem are
u=0 w=0 at z=0
(6

u—>U(x) as z->eco

we assume the following expansions for u and w :

‘ 1 ' 1 . l ’
w= Ut (S = 35 O g fi 0= g i )

1/_2 / 1
W=('(%’l) [—Zfl‘f'(%fs'f' ‘%fl)az—(z%’fs'f'—gfs

1 2 1 1 2
“Bfl)ad"“ (3T5f7+ E(_)ﬁ’_ ng3+94—5f1)08+...]
)]

where a dash denotes derivative w. r. t. y which is defined by

2
= <2U°°_)1/ ,
The form (7) of u and w satisfy the Eqn. (4) of continuity. The boundéry conditions 5
on f1, fs, fs» [+ €tc. are ) ‘

ﬁ=09 .fgl=0’ i=193’5s79 at 7|=0

‘ ’ 1 ‘ 1 1 ‘ l
f1=1’fa=“§"f5=3_'f7 = 4 at 1 —>oo ®

Substituting the expansions of u, w and U in the Eqn. (5) and equating the coefficients
of like powers of 4 to zero, we obtain the following set of ordinary differential

equations for f,, fs, f; and f3

1

fiH A= - é—+ % P a (421 f) + 2BUT AR
©
Srthifi= =1 =Y a2 -+ 85
A e L L VY 2

F2f ) o+ 20 (§ S S S SIS
(10)
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vnfi=—3+ b -Run+rnm+Rors
SRS IR~ 1L~ 5 @
+ 215+ Dt UL R R A
+ 8 (—nsrassenrsnsn v (3o
+ Qs B g sl = 2 Ty AR R
—afrfi + 380 5+ (B + hi s
IS AT RIS an

ffifi=—8—an i+ R nnm -Ras
=B U AR+ S GR Fi =31 f = 282
FAU = ) 4 20 s+ 25 )
B R ARSI+ SUR 255
+ B a2 S
FRIR IR R AL A )
+38 (5 Asl = Fase+ Base + 5 n
2 g Sref v apise - Y,
+ 41l S+ HFP) (12)

v, U, vs U,
where, o = 2—2 and B =2—2,
avl awn

3. Solutions of Equations .

The Egn. (9), subject to the boundary conditions (8) has been solved by Saroa® by
the method of series expansion followed by Laplace’s method. This method has
given sufficiently accurate results. We use this method to solve the remaining
three equations.
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We express the functions f; (n) in power series of 4,
S =tan+ Loawt Lot Lawe Laws
1) =5 @ 3!"’1 4!c:71+5—i R gran s

where v ‘ i=1351,.. , (13)

This form of fj satisfies the boundary conditions (8) at 1 = 0. The other constants
ai, by, ¢, di, e; etc. are to be determined. The Eqn. (13) are valid only for sufficiently
small values of ». Substituting these expansions of f3, f;, f; in the Eqns. (10) to (12),
and equating the co-efficients of different powers of nto zero, we determine the
constants by, c1, di, € etc. in terms of a; only. The constants @ are to be determined
by using the boundary condition (8) at 7 - co. To make use of this conditions, we
write the Eqns. (10) to (12) in the form,

fi'+Afi=Hi@), i=357.. (14)

where H; (1), i = 3, 5, 7 are the right hand sides of the Eqns. (10) to (12) respectively
Letting

F(n) = f Si(n) dn - 15)
and
0D =as + | e Hy(n)dn 16)

By integrating twice the Eqn. (14), we get
. .
i =f e g an

This form can be evaluated by Laplace’s method. The coefficients ag, a5, a, are
given respectively by

I ergthan= 5 (18)
I ergsmdn= 3 a9)
Fergman— ¢ (20)

These integrals can be evaluated asymptotically by Laplace’s method. Putting F = ~,
transforming the Eqns. (18) to (20) to the variable t and integrating in the gamma
functions, we find,

ki = [ Pi Tqyysy + Qi Teysy + Ri Ty + St Tewrns + Ti Paral- 21
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where

k3=%’ k5=%’ k7=*
and

Pr=ha

O = aida + b AT

, _ a3 a 3b§_3b1b, 36
R'_al( 10a1+§21_'{) 2 +3 a

1

Si=ah + é_b, BA A + 3AZ) + e AT Ay + '\‘—(d, ¥ a a)

A, AL AZ
T,=a;)«5+-1§2b1(3/\1)«4+2/\2)«3)+-—5—c( 34 bl )

5 ,
+ 3% @+ g, a) + (e: + 4a, b + b, a). (22)
The Eqn. (21) determine the three unknowns as, as, @, So this Eqn. (21) are in
general divergent. We use Euler’s transformation,
F (i wm, R . A"aq,
”2_"0 (=D a, = ”z_o =D = (23)

where

Aay = Ansy — am, A% Gy = Aam+1 — A amy, ...
To determine as, as, a; from the Eqn. (21), we took five terms of the series and
applied Euler’s transformation once starting from third term. The value of g, has

been taken from Saroa®. The value of a;, as, 4, have been determined for —a« = B
=0, 0.03, 0.06 and the values have shown in Table 1.

Table 1. Values of ag, i = 1, 3, 5, 7 for different values of («, B)

«, B ‘ 0.0 —0.03, 0.03 .—=0.06, 0.06
a 0.9308 0.9525 0.9758

a 1.109453 1.193449 1.39972

ag 1.709728 2.396625 3.401492
aq 3.973331 8.585847 12.94569

4. Discussion
The shearing stress to-on the wall of the sphere is given by

du
To= a‘;‘o

Wy \' ‘ 1
= (F=) ewtas [rO - jO0

, 1 " 4 ‘ l " [
v 30 [1O6 — P 1106 ] (24)
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The position of the separation ring can be obtained by the condition that the shear-
ing stress to the surface must vanish there.

For a Newtonian fluid (= =0), the condition that the shearing stress v, at the
surface vanishes is given by

0.003153 X'* — 0.042743 X -+ 0.369818 X — 0.9308 = 0 (25)

where X = ¢%. The acceptable solution of this cubicis X = 3.632 which gives
6 = 109.2°. Thus for the Newtonian case, the separation occurs at 109.2°. Schlichting

calculated this values to be 109.6° by using the exact values f4 (0), f2(0), f5(0) and
£% (0). Thus the method used is fairly correct.

For a second-order fluid, the conditions of the vanishing the shearing stress at the
surface for — a =f = 0.03, — & = B = 0.06 respectively are

0.006814 X® — 0.059915 X* + 0.3978 X — 0.9525 =0 (26)
0.0102743 X* — 0.085037 X2 + 0.466573 X — 0.9758 = 0 27

Solving these cubics, the acceptable roots are respectively X =3.509, X=3.271. That
is the position of the separation ring is at § = 107.3° and § = 103.6°.

This shows that the effect of second-order terms in the constitutive equation on
the position of the separation ring is to advance it towards the forward stagnation
point. The second order effect is exhibited through the non-dimensional parameter

U, . . .
o= ﬁ% . Thus the point of separation depends on the material constants g, and
1
u, and also the flow parameters Uy, and a@. This is a peculiarity of a second-order
fluid since the point of separation for a Newtonian fluid is independent of those

quantities.
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