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Abgtract. This paper studies magneto-elastic Rayleigh waves on the surface of ortho-
tropic cylinder of varying density.  Solving three dimensional magneto-elastic equa-
tions frequency equations for axial waves are derived.

1. Introduction

During recent years a large number of problems on interaction of elastic field with
electromagnetic field have been investigated due to their extensive applications in
various branches of science like Astrophysics, Geophysics, Acoustics and Plasma-
Physics.  While there exists a large number of papers on isotropic elastic bodies, the
papers on aeolotropic elastic bodies are rare due to the various difficulties arising in
the solution. Kaliski!, Kdiski & Rogula?, Nowacki®, Naran & Verma*, Narain®%7,
Yadava8, and many others have discussed the propagation of magneto-elastic
waves., Sequel to these, the present paper is an attempt to discuss the magneto-
elastic Rayleigh waves on the surface of orthotropic cylinder of varying density. The
density ¢ of the material of the cylinder has been taken in the form p = gors where
g IS constant and s is any integer.  Such problems are very important in earth-quake
researches and in the collision of elastic solids?.

2. Fundamental Equations and Boundary Conditions

Let us consider a perfectly conducting circular cylinder, the vector of the origina
magnetic field being directed along the axis of the cylinder. It is assumed that
the cylinder is placed in vacuum. It is aso assumed that the density varies as the
integral power of the radia distance. The stress strain relations for an orthotropic
cylinder in cylindrica co-ordinates® are,

Grr = C11€rr + C12€09 T+ C13€22
Opo = Cpelrr + C22€p9 + Coglss
Gee — Claerr + C33€00 "}' (33622
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Grz = C'“erz
Goz = Cy5€02
Gr9 = Cgglro fo ‘ e s (1)

where &rr, 6g4,... aNd ey, €55 5... ELC. afe components of stress and strain respectively
and ¢y, €p,... €tC ae elagtic constants.  The strain displacement relation is

2ei; = Uiyy +Ujsi )
and the stress equation of motionl are

d
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¥ = Pg',z‘ (3a)
2, 0,13 HE Ol gy oo
o Oro 5 °°° l— 5z % + —ore + In roar TP (3b)
1 a 3 L1 _ ¥ :
gr tm—l-';- sy oo +é; Ouz + - Ors = 95{22 (3¢)
The Maxwell eguations governing electromagnetic field are,
curl H 47Cur|1_§— 18Bd B
= 4nJ, = o |vB-0 meii 4

where the displacement current is neglected and Gaussian units have been used. We
have also the Ohm'’s law

= {E+%§;—‘x§} | R -

In Egns. (2), (3), (4) and (5) H B, E 7 respectively stand for magnetic mtensty,
magnetic induction, electric intensity and current density vectors, g, and ¢ r&epectlvely

4

denote magnetic permeability and electric conductivity of the solid, i represents the
displacement vector in the strained solid and c is the velocity of light.

The perturbation field equations are

OE* #* =0 (6)
where ‘ i :
> VUL s

1 9 1 oh 1 gE* “
— 2 * .2 —_ . .
0=v— 28tz,CurlE = — ;5 Curl IS - (7)
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Since the cylinder is a perfect conductor of electricity (i.e. ¢ = o) the Egn. (5)
gives,

E

ll

ot

The boundary conditions on the surface r = a are

l(a“xﬁ) hecul@x B, ®)
- > > -
Gk + Tin = TX = 0, = ¥ E = E* Q)

where o is mechanical and Ty is Maxwellian stress-tensor.

3. Method of Solution

We assume
p = pd? - (10)
.. Where p, is constant and s is any integer. Considering the displacement com-
ponents u, v, w to be function of r alone, the stress-strain relation (1) with the help of
Egn. (2) takes the form,
du . u

Gryr =011 ar T+ e

r

Gro = Cgq (EJ‘V - 1) ' | (an

ar r

The equations in (3) as a consequence of Egns. (10) and (11) and the substitutions
U = ue™' y = pee=i, W = wee—i#t give three equations which with the help of the

transformation

== 2 2r(s+2))/2 (12)
take the forms
1d X
Mo 20 +( ~5)n=0 (13)
%, 4 (g “
A R (e e L (14)
d

By LMoy~ as
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where
o = EQPZ A = ___ifiL_
= iR g
wty (mti)6+2
H2 H“ — 64752(’60

2
% _ 4—2)150“(5‘ F y B — 16“2C!es(s_+ 2) %

Y S Y

€y’ g ¢ (19

468

Assuming the harmonic dependence A= x* e=*r*, h¥ x*e—'mand By = AF e~'#t the

Eqn. (6) with the help of Egn. (7) gives,

ae | 1dx 2
 FE e e =0 L)
¥
which is also satisfied by % and x* 5
For magnetic field and Maxwellian tensors in the body, we have, . t‘%}

he=0, ho=0, b= =22y

H H

Ter = -—4—nh,, T,-g: 0, Tr. = ZT“:‘hr
7= — s <0, 1x = Lt )
The boundary conditions as a consequen Eqn. (18) take the forms,
: H?\ d H:\u H .,
("11+ 4—5)[77”4‘(012 + G)F+ﬁh: =0
dv v
Y {,‘66(—‘7':—7) =4 0
dw H
C“ c—;’—f)—-Eht = 0
he = Bt
Ey = E; (19)

4. Axial Waves in a Finite Orthotropic Cylinder

In this case, the solutions of the Eqgns. (13) to (15) must satisfy the conditions of
boundedness at origin, while the solutions of the Eqgn. (17) and two similar eguations,
a infinity. Under these conditions, we have
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wr) = s (B riewe ) e @0
Yy wr) =0 @
ya
W) = Agdy (2L, ressonie ) et @)
and

h* ) = D, H(m (% )e—ipt (23)

e /z;" =0 (24)
g B (r) = D,H® (Fc_’., P‘),.e’f”f 25

Where A, A,, D,, D, are constants, Jy, J;, are Bessel functions of order A and zero;
and H,” is Hankel function of order zero. and of second kind. The boundary

conditions (19) with the help of Eqn. (7) and the Eqns. (20) to (25) give four equations
consisting of four unknowns 4,, A,, D, D, as follows

] sy o) -Gy o)

P, ) _0 26)
A, Hp Jy, (Jﬂ glst2)z ) 4 Do H® p -0 27
2
AaaS/zMZ‘]l (s‘ ‘_:2 a(s+4) ) {__ WD H(Z) (? a ) =0 (28)
3J0( i— 5 alst2)2 ) _fDl -0 (29)

where
— H? H? H
Ml_(cu‘f-:ﬁ:),Nl:(Cm—i—ﬂ),W}aZE,,Mz"—‘cu

Eliminating 41, A,, D, D, from Eqns. (26) to (29), we get the frequency equation as

J/\a(s ~2t-p2 a(s+2)/2 { Po Hz} %‘>
‘ Ciy +

2p (s+2)] Po 3

J*“l(s+2“ )Z{ﬁ?})
1 5 T

) -

o 2
{cu( cu + _;:)}é + IZ:Z‘F ( Cia - g?: )

(30)
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or ,
o W e ) \\
511 + 47,_ »
3 .

s+ 2

2p P
J, alstaiz —_

{ EL}% | | 31)
Can R

We use the result

¥op. X"
L 00 o)
While the value of Y,(x) is dways infinity a x = 0 and for smal values of x this
function is of the order of x~", if n 3£ 0 and of the order log x if » = 0 (Pipes &
Harvill!%) to evaluate the frequency equation as,

e (o 5) o 2]

"Ha “H2a? %
= 8mcK 2K 1672c2 _ HK] . e

or

D)

where

H?
K = 490( (ST ”4—.,;) as+t Ha?
Culs + 2) + 8mc?

From Egns. (Sé) and (57), it is clear that the value of the frequency can be easily cal-
culated if the values of ¢, ¢y5, €43 and H are known.  Knowing the value of p, we can
obtain the values of displacement components u, v, w and the strain components
Grr, Gas, . -.EC.

5. Axial Waves in an lofinite Orthotropic Cylinder

In this case the solution of the Egns. (13) to (15) must satisfy the conditions of
boundedness at infinity while the solution of the Egn. (17) and two similar equations
at origin. Under these conditions, we have,

u(r) = ByYa (sz_r_‘ 5

r(s+2)/2 ) e—ipt (34)

wr) = 0 (35)
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and
B () = C.H,! (% r)e-iz?t 37
h:(r) =0 (38)
h,*(r) = C3H(” —i_—’)’ e—int (9)

Where B,, B;, Cy, C, are-constants; Y and Y,; are Bessel functions of second kind of
order A and zero respectively; and Hél," istHankel fun&ion of first kind of order zero.

The beundary conditions given in Egn. (19) with the help of the Eqn. (7) and the
Eqns. (34) to (39) give four equations consisting of four unknowns B,, B,, C, and C,.
Elimination of these constants give the frequency equations as,

2p 1/
i B
2

FENyIE
Pa(s+2)/2{90(011 + '4—;)}

. : 40)

H2 1/2 HZ 2 (

{044(011 + 4 )} + ﬂacg - (Ciz +%)

2 e z\/ CH ap
‘.Il(s + 2 a ! Caq an H, (?a)
2% o TNT B g

Jl(s,_hz atet '/ '\/c“ "44 Cut g )} + T —'(0124‘15)

(41)

Using the results of Pipes & Harvill'%, we obtain the frequency equation as,

2

p —s+2 als+b H® { H* 8poa®

200 drc [6r2c2 s+ 2 (Clz -1-4

oo

H%a? HK,)* . Ha
P = '[{1—“:% + 1} = I “3)

or
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Whére \\\
H? .
K = 490(6'11 + Zn—) 434—1 Ha*_ SR
o (R ) 4nc?

From Egns. (42) and (43), we can easily obtain the value of the frequency p if ¢yy; cie,
¢y and H are known. Knowing p, we can obtain the displacement components u, v, w,

and the strain components g,+, Gse, . . . ELC.
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