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Abstract. A prototype cellular logic array processor (CLAP-4), which has been 
indigenously constructed using TTL integrated circuits, can process 8 by 4 arrays of 
4-bit image data in parallel, i.e. simultaneously, as a consequence of the parallel 
architecture which enables acceptance of contextual information from the neighbour- 
hood of a pixel. Further CLAP-4 provides 48 arithmetic/logical operations on (up to) 

k three operand images. In this paper, a description of the structure of CLAP-4 is 
presented. 

1. Motivation 

Analysis of images by the standard sequential execution of processing programme 
for feature extraction and classification is computationally demanding due to the large 
amount of data that has to be processed. When viewed in the light of the fact that 
the general purpose (sequential) digital computer has an architecture not particularly 
suited for image processing, and that the different points of the image undergo the 
same type of processing operations, one is led to an analysis of different architectures 
to facilitate faster and more efficient processing of image data. 

In order to carry out image analysis on a computer, the source image is usually 
divided into a square array of picture elements (pels) by horizontal and vertical divi- 
sions. A binary code is used to represent an attribute of the pel that is of interest. 
For example, the intensity of a pel in a monochrome picture could be digitized to 
256 gray levels. A11 algorithm is then applied to this data for feature extraction and 
classification. 

A common characteristic of all image data (photographs, MSS tapes, TV camera 
output etc.) is the enormity of the information that has to be handled. As an example, 
a high resolution 512 x 512 television frame digitized with 8-bit resolution constitutes 
512 x 512 x 8 bits = 2 M bits. A LANDSAT image with 2340 x 3240 pels of 
8 bits each amounts to 60 M bits. 

It is now recognised that interactive processing of remotely sensed data is an 
effective method of developing suitable software for resources estimates. Evidently, 
in order to achieve interactive image processing capability, the image data has to be 
processed and the results displayed fast enough to facilitate fatigue-free operator 
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performance. The required response time is estimated to be 2-5 seconds. In contrast, 
noise removal from a 200 x 256 x 8 bit picture takes 324 seconds on a time shared 
DEC 1090. 

This clearly demonstrates that there is a need to explore alternative computer 
architectures that are more suited to image processing. Conceptually, processing an 
image in such a manner that as many pels as possible are subjected to the desired 
operations at the same time; i.e. parallel processing, offers an apparent solution to the 
problem. Since most of the image processing operations are dependent on contextual 
information, the architecture should allow use of data from the neighbourhood pels 
in the computation. An architecture of this type, the cellular logic array processor, 
was initially proposed by Ungerl and later investigated by GolayZ, Duff3, Preston4 and 
Reeve@, among others. What follows is a description of a prototype parallel proces- 
sor that has been designed and is under construction. A comparison of its features 
with those found in the literature, especially Reeves5, is also briefly given. 

2. Cellular Logic Array Processor Architecture 

Cellular logic array processors usually utilize a separate processing element (PE) for 
each pel of the image, operating in a fixed interconnection single instruction multiple 
data (SIMD) mode. The processing element is usually a simple bit-serial processing 
element which accepts data from one or more bit planes and the four or eight pels 
surrounding the pel it is attached to. Although the operations possible by the proces- 
sing element are elementary, judicious use of the interconnection properties can give 
complex feature extraction with simple programmes. Alternative structures proposed 
include hexagonal tesselationZ which gives six neighbours, or pipelining of cellular 
processorsG. 

In addition to the processing element, such a processor would also require memory 
elements which are accessible in parallel to store data and intermediate results. Since 
it may not be possible to have as many processors as there are pels, extra storage 
elements for edge data would be required to allow successive applications of a smaller 
number of processors (a sub-array processor) to a larger number of pels. Provisions 
would also have to be made to write the data to be processed and to read the 
results. 

The PE architecture used in this prototype CLAP4 is adapted from that described 
by Reeves5. It offers the following types of instructions for array processing : 

(i) Boolean instructions : A boolean function of the input data A and B is 
generated and stored in Y (Fig. 1). 

(ii) Simple near-neighbour instructions : One of the operands A or B is output 
to neighbouring PE's. The near-neighbour function (NNF) generator receives these 
outputs and generates a function of the inputs from the neighbours enabled by control 
signals gl.. .gs. A boolean function of the operands A, B and the input from the NNF 
is generated and stored in Y (Fig. 2). 
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(iii) Recursive near-neighbour itistruclions : The output of the boolean function 
unit is sent to the neighbours. As the NNF uses the data received from the neigh- 
bours, which use the propagation output themselves, a recursive computation results 
(Fig. 3). 

1 . I CONTROL 

The complete PE architecture incorporating dynamic switching between the above 
operations is shown in Fig. 4. 

CLAP-4 differs from Reeves' BASE architecture in two respects. Reeves suggests 
a boolean function generator that provides all or a subset of all, possible boolean 
functions or' three input data bits. In contrast, CLAP4 operates on 4-bit data and 
uses an arithmetic-logiounit (ALU) that provides only the most useful boolean logic 
functions, as well as arithmetic capabilities not directly available in BASE. This 
allows more complicated algorithms to be processed faster. 
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The near-neighbour function generator in CLAP-4 allows selection of a? arbitrary 
number of propagation directions from the 8-neighbour connection (Fig. 5), thereby 
making the operation more flexible. To reduce the complexity of the circuit, the 
propagation output P is generated as the result of 

where N, is the iih propagation input and Gi is the i 'hontrol bit. 

Operands for all the PE's have to be valid simultaneously to allow parallel opera- 
tion. Ordinary random access memory cannot bk used; rather a parallel data register 
is required. This register should also be able to accept data in a serial fashion to 
allow initial setting up of the problem. There should also be at least one register 
that accepts data in parallel from the ALU's and allows sequential access for result 
read out.   his register should allow parallel access for chairied computation. These 
two types of registers-serial-in-parallel-out and parallel-in-parallel-out-serial-out are 
designated X and Y registers respectively (Figs. 6 and 7). A centralized implementa- 
tion was chosen in CLAP 4 to maintain simplicity. However, a distributed imple- 
mentation may be necessary in a larger processor lo reduce interconnections between 
printed circuit boards. 

Use of a sub-array processor on a large picture will require successive applications 
of the sub-array to segments of the image (Fig. 8). To allow propagation of data 
from PE's at the edge of the PE array to a successive application, a storage element- 
the edge register-is provided. It may be noted that recursive operations may be 
impaired in power in this case, since dynamic propagation between sub-array applica- 
tions is not allowed. 

Finally, a control unit has to provide signals to coordinate the operation of the 
various components that make up CLAP-4. This should be capable of : 
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with a KXL array processor. 

(i) Data transfer between the host and the array processor, 

(ii) Command word decoding to specify mode of operation, ALU OP Codes, NNF 
control bits etc., 

(iii) Detection of error conditions in the array processor and communication of 
status to host. 

A block diagram of the architectural requirements is given in Fig. 9. 

3. CLAP4 Implementation 

A prototype ~ellular logic array processor for 4-bit data (CLAP-4) has been designed 
and is under construction. Implementing the architecture described above, it has 
been designed a$ an attached procesFor to an HP 1000 mini-computer. Data and 
instructions are sent from the mini-pomputer, and results read back. 

An 8 x 4 array of PE's has been designed, using a single 200 x 160 mm printed 
circuit board (PCB) for each processing element. Arithmetic and logic operations 
are performed by 74181 ALU's configured for three-operand operations. Neigh- 
bourhood data is input ro the NNF implemented using random logic on the same 
PCB. 

Two registers of type X have been used, designated A and B registers. They 
provide 8 x 4 x 4 bits of storage each. Shift registers (74164) are used to implement 
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Figure 9. Array processor block diagram. 

these serial-in-parallel-out operand registers. Data from the computer is clocked into 
these registers to set up the operand images. 

The result is stored in a type Y register which is a parallel-in-parallel-out-serial- 
out shift register (74198). Loading of this register from the PE outputs is under 
computer corltrol allowing choice of arbitrary settling time for recursive near-neigh- 
bour operations. By means of the serial out capability, data can also be read into 
the computer. Multi-word arithmetic is supported using a carry register which stores 
the carry output from the PE's. This is implemented using a type Y register with 
only one bit-plane, i.e., 8 x 4 x 1 bits of storage. Overflow detection logic has also 
been implemented. 

Repeated application of the sub-array to a larger array requires an edge register 
that can store the data from the 28 pels outside the border of the 8 x 4 array. This 
has been implemented using a type X register designated as EDGE register. The 
host computer can access data from the border pels and write them into this 
register. 

A command interface accepts host commands and data, and generates the control 
signals for the various sub-systems described above. It decodes a 4-bit opcode to 
derive synchronous control signals using bipolar logic. As it can operate at 10 M 
byteslsec, it is proposed to use a microprogrammed interface to the HP 1000 mini- 
computer. This will allow butst transfer of 256 bits at a time, at a maximum rate of 
12 M byteslsec. 

The array processor has been implemented using MSI and SSI TTL logic and 
occupies three double-height 19" racks. Individual sub-systems, i.e. registers, 
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processing elements have been tested and debugged. A wiring list, generated by a 
computer program, will be used to interconnect the various sub-systems. 

4. Further Work 

After completing the prototype array processor and interfacing it to the computer, 
testing is to be undertaken. Under control of the host computer, the prototype will 
be exercised and the results compared to that of a simulator of the architecture. Once 
the correctness' of the implementation is verified, it 1s hoped to evaluate the design 
by implemenring image processing algorithms and comparing execution speeds with 
those obtained on a sequential computer. 

Extension of this architecture to larger arrays can be attempted only when it has 
been fully evaluated and modified as necessary to fulfil its purpose Apart from the 
design of the architecture, implementation of a larger array processor will require that 
the following questions be resolved : 

(i)' The device technology to be used has to be chosen, depending on power 
dissipation, propagation speed and cost from among TTL, CMOS etc. 

(ii) The level of device integration has to be chosen from among custom, semi- 
custom (gate-array) or standard MSI/LSI integrated circuits depending on the 
complexity and size of the architecture to be implemented and the availability of 
indigenous capability. 

(iii) The interconnection scheme to be used, depending on level of device integra- 
tion, edge connector and PCB connection density limitations and architectural require- 
ments. 

(iv) Input-output capabilities to be provided. 
(v) How to provide for ease of maintenance and reliability by suitable design. 
(vi) Choice of enclosures and mechanical structure to suit power and thermal 

requirements. 

(vii) Software requirements to be fulfilled, including development tools, compilers 
etc. 
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