
Def Sci J, Vol 35, No. 3, July 1985, pp 353-359

Implementation of a Prototype Cellular Logic Array Processor

A. MUKHERJEE & Y. V. VENKATESH

Indian Institute of Science, Bangalore-560012

Abstract. A prototype cellular logic array processor (CLAP-4), which has been
indigenously constructed using TTL integrated circuits, can process 8 by 4 arrays of
4-bit image data in parallel, i.e. simultaneously, as a consequence of the parallel
architecture which enables acceptance of contextual information from the neighbour-
hood of a pixel. Further CLAP-4 provides 48 arithmetic/logical operations on (up to)

k three operand images. In this paper, a description of the structure of CLAP-4 is
presented.

1. Motivation

Analysis of images by the standard sequential execution of processing programme
for feature extraction and classification is computationally demanding due to the large
amount of data that has to be processed. When viewed in the light of the fact that
the general purpose (sequential) digital computer has an architecture not particularly
suited for image processing, and that the different points of the image undergo the
same type of processing operations, one is led to an analysis of different architectures
to facilitate faster and more efficient processing of image data.

In order to carry out image analysis on a computer, the source image is usually
divided into a square array of picture elements (pels) by horizontal and vertical divi-
sions. A binary code is used to represent an attribute of the pel that is of interest.
For example, the intensity of a pel in a monochrome picture could be digitized to
256 gray levels. A11 algorithm is then applied to this data for feature extraction and
classification.

A common characteristic of all image data (photographs, MSS tapes, TV camera
output etc.) is the enormity of the information that has to be handled. As an example,
a high resolution 512 x 512 television frame digitized with 8-bit resolution constitutes
512 x 512 x 8 bits = 2 M bits. A LANDSAT image with 2340 x 3240 pels of
8 bits each amounts to 60 M bits.

It is now recognised that interactive processing of remotely sensed data is an
effective method of developing suitable software for resources estimates. Evidently,
in order to achieve interactive image processing capability, the image data has to be
processed and the results displayed fast enough to facilitate fatigue-free operator

354 A Mukherjee & Y V Venkatesh

performance. The required response time is estimated to be 2-5 seconds. In contrast,
noise removal from a 200 x 256 x 8 bit picture takes 324 seconds on a time shared
DEC 1090.

This clearly demonstrates that there is a need to explore alternative computer
architectures that are more suited to image processing. Conceptually, processing an
image in such a manner that as many pels as possible are subjected to the desired
operations at the same time; i.e. parallel processing, offers an apparent solution to the
problem. Since most of the image processing operations are dependent on contextual
information, the architecture should allow use of data from the neighbourhood pels
in the computation. An architecture of this type, the cellular logic array processor,
was initially proposed by Ungerl and later investigated by GolayZ, Duff3, Preston4 and
Reeve@, among others. What follows is a description of a prototype parallel proces-
sor that has been designed and is under construction. A comparison of its features
with those found in the literature, especially Reeves5, is also briefly given.

2. Cellular Logic Array Processor Architecture

Cellular logic array processors usually utilize a separate processing element (PE) for
each pel of the image, operating in a fixed interconnection single instruction multiple
data (SIMD) mode. The processing element is usually a simple bit-serial processing
element which accepts data from one or more bit planes and the four or eight pels
surrounding the pel it is attached to. Although the operations possible by the proces-
sing element are elementary, judicious use of the interconnection properties can give
complex feature extraction with simple programmes. Alternative structures proposed
include hexagonal tesselationZ which gives six neighbours, or pipelining of cellular
processorsG.

In addition to the processing element, such a processor would also require memory
elements which are accessible in parallel to store data and intermediate results. Since
it may not be possible to have as many processors as there are pels, extra storage
elements for edge data would be required to allow successive applications of a smaller
number of processors (a sub-array processor) to a larger number of pels. Provisions
would also have to be made to write the data to be processed and to read the
results.

The PE architecture used in this prototype CLAP4 is adapted from that described
by Reeves5. It offers the following types of instructions for array processing :

(i) Boolean instructions : A boolean function of the input data A and B is
generated and stored in Y (Fig. 1).

(ii) Simple near-neighbour instructions : One of the operands A or B is output
to neighbouring PE's. The near-neighbour function (NNF) generator receives these
outputs and generates a function of the inputs from the neighbours enabled by control
signals gl.. .gs. A boolean function of the operands A, B and the input from the NNF
is generated and stored in Y (Fig. 2).

Prototype Cellular Logic Array Processor 355

CONTROL fiFh PROCESSOR

MEMORY

TO NEIGHBOURS] 1 2
SELECTOR

MEMORY

N [OUTPUT

Figure 1. Locai Boolean Figure 2. Simple near neighbour operations.
operations.

i

(iii) Recursive near-neighbour itistruclions : The output of the boolean function
unit is sent to the neighbours. As the NNF uses the data received from the neigh-
bours, which use the propagation output themselves, a recursive computation results
(Fig. 3).

1 . I CONTROL

The complete PE architecture incorporating dynamic switching between the above
operations is shown in Fig. 4.

CLAP-4 differs from Reeves' BASE architecture in two respects. Reeves suggests
a boolean function generator that provides all or a subset of all, possible boolean
functions or' three input data bits. In contrast, CLAP4 operates on 4-bit data and
uses an arithmetic-logiounit (ALU) that provides only the most useful boolean logic
functions, as well as arithmetic capabilities not directly available in BASE. This
allows more complicated algorithms to be processed faster.

Y -
I+-

4 It

NB

zf-

u
MEMORY

Figure 3. Recursive near neighbour operations.

91 9 8 CONTROL
.

NNF j

11
BOOLEAN

l 2 PROCESSOR
' 3

-
-

N 1

-2
:

N8

't

N (OUTPUT TO NEIGHBOURS) NNF

4 ,
I

I -
4 l

- 1 3

-
. A -
- B

Y

BOOLEAN
12 PROCESSOR

356 A Mukherjee & Y V Venkatesh

Figure 4. Processing element fot &r&erations. - - * . A . * - -
**

. .,
k

The near-neighbour function generator in CLAP-4 allows selection of a? arbitrary
number of propagation directions from the 8-neighbour connection (Fig. 5), thereby
making the operation more flexible. To reduce the complexity of the circuit, the
propagation output P is generated as the result of

where N, is the iih propagation input and Gi is the i 'hontrol bit.

Operands for all the PE's have to be valid simultaneously to allow parallel opera-
tion. Ordinary random access memory cannot bk used; rather a parallel data register
is required. This register should also be able to accept data in a serial fashion to
allow initial setting up of the problem. There should also be at least one register
that accepts data in parallel from the ALU's and allows sequential access for result
read out. his register should allow parallel access for chairied computation. These
two types of registers-serial-in-parallel-out and parallel-in-parallel-out-serial-out are
designated X and Y registers respectively (Figs. 6 and 7). A centralized implementa-
tion was chosen in CLAP 4 to maintain simplicity. However, a distributed imple-
mentation may be necessary in a larger processor lo reduce interconnections between
printed circuit boards.

Use of a sub-array processor on a large picture will require successive applications
of the sub-array to segments of the image (Fig. 8). To allow propagation of data
from PE's at the edge of the PE array to a successive application, a storage element-
the edge register-is provided. It may be noted that recursive operations may be
impaired in power in this case, since dynamic propagation between sub-array applica-
tions is not allowed.

Finally, a control unit has to provide signals to coordinate the operation of the
various components that make up CLAP-4. This should be capable of :

Prototype Cellular Logic Array Processor

PE 1 PE 32 4l DATA. OUT J 4 , I

SERIAL-IN-PARALLEL-OUT

Figure 5. Near neighbour Figure 6. Type X register.
interconnections.

7 M --- I.

\
OUT-SERIAL-OUT

I I -T

1 FULL IMAGE 4. I
Figure 7. Type Y register. Figure 8. Processing a larger MXN picture

with a KXL array processor.

(i) Data transfer between the host and the array processor,

(ii) Command word decoding to specify mode of operation, ALU OP Codes, NNF
control bits etc.,

(iii) Detection of error conditions in the array processor and communication of
status to host.

A block diagram of the architectural requirements is given in Fig. 9.

3. CLAP4 Implementation

A prototype ~ellular logic array processor for 4-bit data (CLAP-4) has been designed
and is under construction. Implementing the architecture described above, it has
been designed a$ an attached procesFor to an HP 1000 mini-computer. Data and
instructions are sent from the mini-pomputer, and results read back.

An 8 x 4 array of PE's has been designed, using a single 200 x 160 mm printed
circuit board (PCB) for each processing element. Arithmetic and logic operations
are performed by 74181 ALU's configured for three-operand operations. Neigh-
bourhood data is input ro the NNF implemented using random logic on the same
PCB.

Two registers of type X have been used, designated A and B registers. They
provide 8 x 4 x 4 bits of storage each. Shift registers (74164) are used to implement

358 A Mukherjee & Y V Venkatesh

Figure 9. Array processor block diagram.

these serial-in-parallel-out operand registers. Data from the computer is clocked into
these registers to set up the operand images.

The result is stored in a type Y register which is a parallel-in-parallel-out-serial-
out shift register (74198). Loading of this register from the PE outputs is under
computer corltrol allowing choice of arbitrary settling time for recursive near-neigh-
bour operations. By means of the serial out capability, data can also be read into
the computer. Multi-word arithmetic is supported using a carry register which stores
the carry output from the PE's. This is implemented using a type Y register with
only one bit-plane, i.e., 8 x 4 x 1 bits of storage. Overflow detection logic has also
been implemented.

Repeated application of the sub-array to a larger array requires an edge register
that can store the data from the 28 pels outside the border of the 8 x 4 array. This
has been implemented using a type X register designated as EDGE register. The
host computer can access data from the border pels and write them into this
register.

A command interface accepts host commands and data, and generates the control
signals for the various sub-systems described above. It decodes a 4-bit opcode to
derive synchronous control signals using bipolar logic. As it can operate at 10 M
byteslsec, it is proposed to use a microprogrammed interface to the HP 1000 mini-
computer. This will allow butst transfer of 256 bits at a time, at a maximum rate of
12 M byteslsec.

The array processor has been implemented using MSI and SSI TTL logic and
occupies three double-height 19" racks. Individual sub-systems, i.e. registers,

Prototype Celltrlar Logic Array Processor 359

processing elements have been tested and debugged. A wiring list, generated by a
computer program, will be used to interconnect the various sub-systems.

4. Further Work

After completing the prototype array processor and interfacing it to the computer,
testing is to be undertaken. Under control of the host computer, the prototype will
be exercised and the results compared to that of a simulator of the architecture. Once
the correctness' of the implementation is verified, it 1s hoped to evaluate the design
by implemenring image processing algorithms and comparing execution speeds with
those obtained on a sequential computer.

Extension of this architecture to larger arrays can be attempted only when it has
been fully evaluated and modified as necessary to fulfil its purpose Apart from the
design of the architecture, implementation of a larger array processor will require that
the following questions be resolved :

(i)' The device technology to be used has to be chosen, depending on power
dissipation, propagation speed and cost from among TTL, CMOS etc.

(ii) The level of device integration has to be chosen from among custom, semi-
custom (gate-array) or standard MSI/LSI integrated circuits depending on the
complexity and size of the architecture to be implemented and the availability of
indigenous capability.

(iii) The interconnection scheme to be used, depending on level of device integra-
tion, edge connector and PCB connection density limitations and architectural require-
ments.

(iv) Input-output capabilities to be provided.
(v) How to provide for ease of maintenance and reliability by suitable design.
(vi) Choice of enclosures and mechanical structure to suit power and thermal

requirements.

(vii) Software requirements to be fulfilled, including development tools, compilers
etc.

Acknowledgement

Financial support from the Indian Space Research Organisation under its RESPOND
program is gratefully acknowledged.

References

1. Unger, S. H., Proc. IRE, 46 (1958), 1744-1750.
2. Golay, M. J. E., IEEE Trans. Computers, C-18 (1969), 733-740.
3. Duff, M. J . B., et al., Pattern Recognition, 5 (1973), 229-247.

' 4. Preston, K. Jr., et al., Proc. IEEE, 67 (1979), 826-856.
5. Reeves, A. P., IEEE Trans. on Computers, C-29 (1980), 278-287.
6. Sternberg, S. R., IEEE Computer, 16 (1983), 22-34.

