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Trends in Pattern Recognition and Machine Learning 

D. DUTTA MAJUMDAR 

Indian Statistical Institute, Calcutta 

Abstract. This paper is tutorial in nature introducing the statistical and syntactic 
pattern recognition technique. The problem of pattern recognition has special reference 
with image analysis and some aspects of modern methods and application of the area of 
shape analysis and detection of objects included. 

1. Introduction 

During the past two and a half decades, there has been a considerable growth 
of interest in problems of pattern recognition. This is because a tremendous amount 
or' non-numerical information is being generated as a result of continued interaction 
between science and technology on the one hand and the emerging man-machine 
civilization of the modern human society on the other. This demand has created an 
increasing need of methods and techniques for use in the design of pattern recogni- 
tioa systems. Many different approaches have been proposed for diverse types of 
applications and a large number of research papers including some books have 
been published. 

In this paper, an attempt hss been made to present the problems of pattern recogni- 
tion (and image analysis which is the largest sub-group of pattern recognition) and 
modern trends in its methods and applications. Trends of research in frontier areas 
of this subject, in the author's view are being directed towards some major objectives 
some of which are application dependent as is enunciatedin the following sections. The 
other objective is from futuristic developments of fifth generation computer communi- 
cation technology and related knowledges based architecture (Fig. 1) which is beyond 
the scope of this paper. Though one may look at pattern recognition as signal 
processing in two and more dimensions and signal processing as pattern recognition 
in one dimension such a fusion is yet to take place in practice. So an attempt has 
been made to organise presentation in a fashion covering preliminaries of the methods 
and applications and then indicate the recent trends and their implications in a 
nutshell as follows : (1) PR and ML application areas and conceptualisation of the 
methodologies involved towards a generalised model (Fig. 2); (2) Mathematical and 
statistical approaches so far experimented with e.g, (a) statistical decision theory, 
(b) syntactic approach (Fig. 3), and fuzzy set theoretic approach and their recent 
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Figure 1. Conceptual diagram of the fifth generation computer system. 
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trends (Fig. 4); (3) Pre-processing and feature selection problem; (4) Problems of 
shape analysis; (5) Stochastic approach in PR and machine learning; and (6) Some 
applications of PR techniques in undersea search. 

2. Syntactic Approach 

A syntactic pattern recognition system can be considered as consisting of two 
major parts-analysis and recognition. The analysis part consists of primitive 
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Figure 2. Conceptualization of a pattern recognition system in block diagram. 

Figure 3. Block diagram of a syntactic pattern recognition system. 
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selection and grammatical or structural inference and the recognition part consists 
of pre-processing, segmentation or decomposition, primitive and relation recogni- 
tion and syntax analysis. A simple block diagram of such a system is shown in 
Fig. 3. 

The pre-processing stage is very important in any patiern recognition sysiem and 
is common to statistical, syntactic and fuzzy approach. To make the processing in 
ihe later stages more efficient, some sort of data compression should also be attempt- 
ed at this stage. Each pre-processed pattern is then represented by a language-like 
structure e.g. string. This pattern representation process consists of pattern segmenta- 
tion or decomposition and primitive, and relation recognition. 

To represent a pattern in terms of its sub-patterns, we must segment or decon~pose 
the pattern and, in tlie meantime, identify or recognize the primitives and the relations 
in it. In other words, each pre-processed pattern is segmented or decomposed into sub- 
patterns and pattern primitives based on pre-specified syntactic operations. I11 turn, 
each sub-pattern is identified with a given set of pattern primitives. Each pattern at this 
point is represented by a set of primitives with specified syntactic operations, and in more 
recent sophisticated systems should also be able to detect the syntactic relations withir~ 
the pattern. For example, in terms of concatenation operation, each pattern is represent- 
ed by a string of concatenated primitives. The decision as to whether or not the 
representation (pattern) is syntactically correct (i.e., belongs to the class of patterns 
described by the given syntax or grammar) will be made by the syntax analyser or 
parser. When performing the syntax analysis or parslng, the analyser can usually 
produce a complete syntactic description, in terms of a parse or parsing tree, of the 
pattern, provided that the latter is syntactically correct. Otherwise, the pattern is 
either rejected or analysed on the basis of other given grammars which presumably 
describe other possible classes of patterns under consideration. 

- ~ 

In order to have a grammar describing the structural information about the 
class of patterns under study, a grammatical inference machine is required that can 
infer a grammar from a given set of training patterns in language-l~ke representation. 
Current trend is to perform this task primarily by the designer or through an interac- 
tive procedure. This machine's functioil is analogous to the 'learning process' in the 
decision theoretic pattern recognition system. The structural description of the class 
of patterns under study is learned from the actual sample patterns from that class. 
The learned description, in the form of a grammar, is then used for pattern descrip- 
tion and syntax analysis. A more general form of learning might include the capa- 
bility of learning the best set of primitives and thecorresponding structural description 
for the class of patterns concerned. 

3. Training and Learning in Recognition System Design 

3.1 .  The Process of Learning 

The classifiers so far described can be implemented with complete a priori 
knowledge relevant to pattern classes, namely, weighting co-efficients in linear discrimi- 
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nant classifier, reference vectors in minimum distance classifier and P(Ck) (p.d.  f.) and 
P(X/Ck) (conditional p.d.f.) in Bayes' classifier etc. In practice, an infinite number of 
samples of classes are not available. We have, instead, a finite and usually small 
number of samples so that information required for optimal design of feature extrac- 
tor or classifiers is often partially known. Under such circumstances, we must 
assume at best, that these samples are representative of those that would be obtained 
by examining a much larger sample size. If this requirement is satisfied-and we must 
usualy satisfy this requirement through engineering judgement exercised in the 
selection of samples-the classifier can be designed to have the capability of learning 
the best values of the statistical information from the training patterns to result in 
nearly the minimum number of misclassification. 

Learning is a task of constructing the regions or templates in the N-dimensional 
space in which labelled samples of the classes are contained. By observing the 
pztterns with known classification, a linear discriminant classifier, for example, can 
automatically adjust the weighting co-efficients associated with its discriminant 
function. The performance of the classifier is supposed to improve as the number of 
training patterns is increased. Under the assumption that the patterns from different 
classes are linearly separable, it is also possible to develop several algorithms refer- 
red to as 'error-correction9 training procedurel-'' to find the linear hyperplanes which 
properley separate the data and to have the property of converging to the solution 
which linearly separates the prototypes into their correct classifications if indeed the 
data is so separable. 

In the statistical classification approach, if the unknown information is the para- 
meter values of a known distribution function P(X/Ck), the parametric learning tech- 
nique can be applied. Suppose +, &, ...+*, ...+, are the m training subsets of patterns 
corresponding to the m classes. Then with the knowledge that P(X/Cj) are normal, 
the estimates of the parameters S, and Z, are defined by the following sample 
statistics 

where E(X) denotes expected value of X, M j  is the number of patterns in the training 
subset 4, and ( X ) j  and ( S ) j  denote the sample mean (or centre of gravity) and 
sample covariance mstrix respectively of the jth class. If, on the other hand, both 
the function and parameter values are unknown, the non-parametric techniques in 
general should be used. 

The two stages of pattern recognition-deriving the decision rule (learning) and 
using it to recognise a pattern--can be performed in two ways : (a) learning before 
recognition, and (b) learning and recognition concurrently. In the first method, all 
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the labelled pattern samples are collected and the best decision rule based on those 
samples is derived. The fixed decision rule is then applied without change to classify 
unlabelled patterns. The decision rule in the latter method is adaptive and is updated 
according to output decision. If the learned information gradually approaches the 
true information, then the decisions based on the learned information will eventually 
approach the optimal decision as if all the information required is known. Therefore, 
during the system's operation, the performance of the system is gradually improved. 
Learning process can be termed as 'supervised' or 'non-supervised' depending on 
whether the correct classification of the ~nput patterns observed is known or not. 
Learning methods based on Bayesian estimation techniques and stochastic approxima- 
tion are discussed in the followirlg sections. 

3.2. Bayesian Learning 

Since the estimates of parameters are random vectors, it will be shown in this section 
how the density function of the estimate can be calculated by a successive process. 
Both the supervised and unsupervised techniques using Bayes' theorem are treated 
separately. 

3.2.1. Supervised learning : Supervised estimation schemes ~lsing Bayesian learn- 
ings are discussed here to successively estimate an unknown parameter 4 in a known 
form of feature distributior of each class P(X/Cj). Let us assume that on a priori 
density function for the unknown parameter 4 be Po(4) which reflects the initial 
knowledge about 4 (N-dimenticmal vector). Let XI, X,,. . . . Xn be a sequence of 
independent identically distributed feature vectors observed from the same pattern 
class C,. Then according to Bayes' theorem, the function Po($) changes to the 
a posteriori density function P($/X,, .. . Xn) For example, the a posteriori density 
function of 4 given the first observation Xl is 

After Xl and X, are observed, the a posteriori density function of 4 is 

After nth observalion is observed 

With the knowledge of P(4/X,, ... Xn) one can compute the required probability 
density function 
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where P(Xn+l/Xl. ... Xn, Cj, 4) is known. The a posteriori density function on the 
averagebeconles more concentrated and converge to the true value of the parameter so 
long as the true value is not excluded by the a posteriori density function of the 
parameter5 4. 

Consider for example, the case of learning the mean vector B with known co- 
variance matrix S for a Gaussian distribution. Let 2, represent the initial estimate of 
the mean vector and So be the initial covariance matrix which reflects the uncertaintity 
about ,Yo so that 

Po@) = P"(X) = -- 
1 

( 2 ~ ) ~ ~ ~  I S O  I ,,, exp [- i(W - Wo)T SO-I (X - XO)] 

(7) 

Then after successive application of Bayes' theorem, the a posteriori density function 
P(Z/X , ,  .. . Xn) is again a Gaussian density function with Z0 and So replaced by the 
new estimates 2, and S,,, where 

Sn = COV [/Fn,l/~,, ... Xn] 

= (n-IS) (So $- n-l S )  So (8b) 

and 

In a special case, where I 

and S n =  - S 
I2 + a. 

where Xn and Sn are respectively, the conditional mean and covariance of X after n 
learning observations. As n -+ -, 'T, + ( X \, an unbiased estimate of true mean 
vector and Sn -+ 0. 

There are other cases such as estimating mean vector and covariance matrix and 
learning the covariance matrix with zero mean vector e t ~ . ~ " ' ~  using Bayesian 
iterative process. 

3.2.2. Non-supervised leqrning : In non-supervised learning, the learning observa- 
tions (as their correct classifications are not known) are considered as conling from 
the mixture distribution with the probability distribution of each class as component 
distributions. The problem of learning is then reduced to a process of successive 
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estimation of some unknown parameters in either a mixture distribution of all possible 
pattern classes or of a known decision boundary. 

The mixture distribution is defined as 

where P(x/z:) denotes the ith-partition conditional distribution, P(z:) the mixing 

parameter for ith-partition Z: and W (= mn, m = number of class distribution) is 

the number of ways z:, z:, ..z; in which the set of training observations XI, X;,, 

... Xn can be partitioned constituting an overall mixture distribution. 

If p(XI4, P) represents the parameter conditional mixture distribution where 4 -1 

$2r . .4W} and P = {PZ,"), P(z",), ... P(z;)) are the two sets of parameters and 

P(X/4i, 2:) the ith parameter conditional distribution, then in terms of the set of 

parameters the above equation becomes 

The problem of non-supervised learning is, therefore, reduced to that of finding a 
unique solution for 4 and P, given P(X/$, P). 

Let us now assume that there are two pattern classes Cl and C2 having the respec- 
tive known form of the probability density functions P(XJCl) and P(X/C,) and the 
parameter 4 of the mixture distribution is unknown. Then the a posteriori density to 
estimate the parameter cp is obtained by the Eqn. (12). 

P(+/x,, • . . Xn) =: C p(4/xl, . . x n ,  Z: ) P(Z; 1x1, .Xn) (12) 
i 

i = 1, 2, ... W, W = 2* 

The problem is therefore reduced to that of supervised learning for each of the 2" 
* partitions. 

To estimate the parameter of an optimum decision boundary of a two-class 
pattern recognition problem, consider that learning observations Xi, X,, Xn are 
drawn from one of the classes Cl and C, having univariate Gaussian distribution 
with some unknown parameters. If the variance of each class is the same and 
P(Cl) = P(C2) - 112, the optimum decision boundary in non-sequential Bayes' 
classification process is  known to be the mean of the two means. 

For supervised learning, the two means can easily be learned from the classified 
learning observations. In case of non-supervised learning, the problem is one of 
estimating the mean of the mixture distribution P(X) where 
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1 
=- 

exp [ - a2/202] exp [ - (1/2a7 x 

x (X - L7)2] Cosh [(6/02) ( X  - X)] (1 4a) 
where 

a = (.3a - &)/2 ( 14'3) 

\z = (2, + lV3)/2 (14~)  

and the optimum decision boundary is seen to be simply the mean X of the mixture 
distribution. The simplest estimate of X is the sample mean 

For the case of N-dimensional spherically symmetric multivariate Gaussian distribu- 
tions which differ only in the mean vector location, the optimum decision boundary is 
the (N - I)-dimensional hyperplane which perpendicularly bisects the vector connecting 
the two means2'3. Several other approaches for learning of recognition systems are 
available in literature1-lo. 

3.3. Learning Using Stochastic Approximation 

Stochastic approximation is a recursive technique that has been developed as an 
optimization technique for random environments. This approximation can be used 
for successive estimation of an unknown parameter when due to the stochastic nature 
of the problem the measurements are having certain errors. The technique guarantees 
the convergence of the algorithm even when the observation vectors are not linearly 
separable. Details about stochastic approximation along with the several applications 
such as in communication theory, control theory and pattern recognition, are 
available in texts.l-$'11-16 This section relates only to some of the learning methods 
in pattern recognition problems using stochastic approximation. Before that discus- 
sion, let us first consider a simple example which leads to a basic approach to 
successive estimation and then describe the Robbins-Monro algorithm13 in which 
a simplest form of stochastic approximation is used in finding a roQt of a regression 
function. 

Suppose we have n observation vectors XI, X2.. . .Xn and we want to make a succes- 
sive estimate of the mean vector from these observations. The non-successive 
estimate Z,, of the mean vector based on these observations is given by 

t 
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This can be written as 

Therefore, if we store n and Xn-,, the mean vector estimatedfrom (n - 1) samples, we 
can compute Xn with a new incoming nth observation Xn using Eqn. (17c). It also 
shows that as n increases, the effect of the new sample Xn on the expected vector 
decreases as follows 

The sequence 1, 1 1  1 7 7J7 . . . ;-, 1 . . . - is known as a 'harmonic sequence'. The above 
n 

findings therefore suggest that if we have an expression for non-successive estimate of 
a parameter from n samples, the expression for its successive estimate may be obtain- 
ed by separating the estimate in two parts, one of which corresponds to the estimate 
obtained from (n - 1) samples and the other is the contribution of the nth sample. 
The effect of the nth sample can also be made reduced by using a co-efficient which is 
a decreasing function of n. 

3.3.1. The Robbins-Monro Algorithm : Let f(0) be a function of having a single 

root t? so that 

f$) = 0 (18a) 

f(0) > 0 for 0 > 8̂  ( 1 8b) 

f(0) < 0 for 0 < 8̂  (18~)  

The last two conditions are assumed with little loss of generality since most functions 
of a single root not satisfying these conditions can be made to do so by multiplying the 
function by - 1. If g(8) denotes the noisy value of the regression function f(0) then 
(f(0) - g(0)) will denote the elror between these true and noisy random observation at 
a particular value of 0. These are illustrated in Fig. 5. 

Let us now assume that (a) the random observations g(0) are unbiased and 
(b) variance of the random observation g(0) from f(0) is finite for all values 
of 0. 

The first assumption does mean that if there are numerous observations g(0) 
for a fixed 0, the expected value of these observations should approach f(0) at that 
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Figure 5. Finding a root of a regression curve representing a discriminant function. 

point as the sample size increases. The second assumption on the other hand needs 
the noisy observation to be reasonably well behaved. In other words, it precludes 
noisy observations which are so far from f(0) that the root-finding algorithm would 
never be able to recover. These two assumptions therefore imply that 

where A is a finite positive constant. 

Under these assumptions, the Robbins-Monro algorithm can be used to succes- 
sively estimate the root 0 of the function f(0). The algorithm says that if 0, represents 
the estimate of the root at nth iteration and g(0,) is the nth random observation, then 
the (n + 1)th estimate of 0 is given by 

% . ?- 

On+, = On - An g(0n) (20) 

where A n  is a member of a sequence of positive numbers satisfying the following 
conditions, 

Lt An -; 0 
n-+ co 

(2la) 

Z An = w, n = 1 ,  2, ... 00 

n 
(2 1 b) 

Z hi < w, n = 1, 2, ... w 
n 

(214 
-'. 

These three conditions (21a, 21b, 21c) showed that the algorithm (20) will converge 

to B în the mean square sense13, i.e., 
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Lt E((0n - ! ) a )  = O (22) - 
n-+ ca 

The Eqn. (22) says that as the number of iteration-approaches infinity, the variance of 

0n i will approach zero, i.e., 0, will approach 8. 
The physical meaning and the role of the Eqns. (21) for the convergence of the 

algorithm can be described as follows. Eqn. (21a) allows the process to settle down 
in the limit. The Eqn. (21b) insures on the other hand that there is enough corrective 
action to avoid stopping short of the process. The finite variance of the accumulated 
noise is guaranteed by Eqn. (21c) so that we can correct the effect of noise. For 

1 1 instance, A, = --, a harmonic sequence and more generally An = IlnK, 1 > k > - 
n 2 

satisfies equations (21a) through (21c). It is to be mentioned here that these are not the 
only possible sequences. 

The convergence of the algorithm (20) with probability 1, i.e., 

Prob { Lt 0% = !) = 1 
n+m 

(23) 

was established by Bluml% This stronger form of convergence indicates that, in the 

limit, it is guaranteed that 0n will equal 6. It was Dvoretzky15 who gave a generalised 
form of these proofs of Robbins-Monro and Blum and showed that the convergence 
criteria Eqns. (22) and (23) held for any stochastic approximation procedures satisfying 
the conditions of his theorem. 

Consider Eqns. (20) and (21). Since any sequence An satisfying Eqns. (21) must 
decrease with increasing n, the decreasing significance of the correction 'factor An has 
the effect of decreasing the magnitude of the adjustments with successive iterations. 
As a result, the Robbins-Monro algorithm, as well as other similar stochastic approxi- 
mation schemes, is found generally slow to converge. Of course, this is the price for 
guaranteed convergence. One way to accelarate this Robbins-Monro algorithm is to 
change An to the next value only when a sign change of g(0,) is observed. Because 

change in sign of g(0,) tend to occur more often in the vicinity of the root i. For the 

points away from i ,  convergence speed is more important than guaranteed convergence 

and large corrgctions are desired. When a sign change of g(0n) is observed near !, we 
have to start worrying about convergence and therefore the corrections should be 
smaller and smaller. -- / 

I 
3.3.2. S~pervzsed learning : ' Let XI, J2, ... X,,... be a sequence of classified training 
feature vectors f ro9  which P(C,), the unknown a priori probability of jth class, j - 
1, 2, . . .m is to be estimated. If the initial estimate of P(Cj) is P,(Cj) such that 

0 < P,(Cj) < 1 (244 
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then the successive estimates of P(Cj) can be obtained from the following stochastic 
,approximation algorithm 

where I ; n j = n ,  j -  I 2, ... m 
j 

(25'3) 

nj denotes the number of times the observations are from jth class, Pn(Cj) represents 
the value of P(Cj) estimated after nth iteration and {An) is a sequence of numbers 
satisfying the convergence conditions. Since E(n,) = n P(Cj), the conditions 

and 

will always exist. Therefore, the successive estimates P,,(Ci) will approach the true 
value P(C,) in the mean square sense and with unity probability. 

Let us now consider the case of learning an unknown probability density function 
P(X) from the observations XI, X2, ... Xn. Let P(X) be denoted by afiniteseries 
approx~mation in the form2. 

where E,(X) is a system of orthonormal functions such that 

SEj(x) E4-V dX = 0, i # j 

The parameiers {a,)  can be estimated from the stochastic approximation algorithm 
given below 

where a,,,,,, denotes the estimated value of aj  after (n + I)th iteration and {An) 
satisfies the conditions (21). Therefore, as n + 00, aj(n) -t al, in the mean square 
sence and with probability 1. 

Consider for example, the case of learning the mean vector 2 of a Gaussian 
distribution. It is a special case of the above algorithm where the form of the density 
functior~ is known but some parameters are unknown. 

Now in terms of recursive relationships, (8a) and Eqns. (8b) can be written as _- 

and S n  = S(Sn-1 -b S)-I Sn-I (30b) 
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By adding and subtracting 8,-, at the right hand sides, Eqn. (30a) can be written as 

X n  = Xn-I + Sn-l(Sn-l $ S)-l (Xn - Xn-I) (3 1) 

In a special case, where Eqn. (9a) is satisfied i.e., 

SO = a-I S, a > 0 
8 n  = Xn-1 + (n + a)-' (Xn - Xn-i) (32) 

Let us now assume that 

(a) Xn is an N-dimensional noise vector satisfying the conditions of zero mean and 
finite variance-for each component and for all n i.e., 

where X is the true mean vector to be learned and 

1 2  N 
+* = (7 n, 'In 7 ...73 ) (339 

and (b) An = (n 4- cr)-l (34) 

Then using Eqns. (33a) and (34), Eqn. (32) can be written as 

Xn = Xnd1 + An(/Y + 70 - XL~)  (35a) 

= (1 - An) Xn-, + A n X  $- An+n (35b) 

F n  Xn-I + An X + h q n  (35~)  

= Tn(Xl, Xi, ...Xn-l) -t. Anqn (354 
where 

Fn = 1 - An = 1 - (n + a)-' 
- (36a) 

and T,(X,, za ,  ... Xn-l) 5 F n  Xn-l + An X (36b) 

Therefore, 
- 

IITn(q, X2, ...Xn-l) - X 11 = 1 1  ~nXn-1 - (1 - An) I/ 
= F n  1 Xn-l - X I/ (37) 

and F n  satisfies the conditions, 

Fn > 0 and ll Fn -- 0, n r= 1, 2, ... m 
n 

Again, since 

11 8, 11 < CO, XO denotes the initial estimate of X (3ga) 

and E [[lqnlI2]< B < 00, B denotes some boundary (38b) 

We may write 

E[llXollel + T; E [IlAn7*I121 < E EIIXU 1121 + B A: < O0 69) 
n n 

n = 1, 2, ... 00 
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Now according to Dvoretzky's theorem for normal linear spaee2'16, the condition (39) 
implies that 

and Prob { Lt Xn = .?} = 1 
n-tco 

Therefore, Eqn. (32) represents an expression of a special case of stochastic approxima- 
tion and the convergence of 8, to the true mean vector X in the mean square sense 
and with unity probability is implied by Dvoretzky's theorem. 

3.3.3. Non-supervised learning : As mentioned in Section 3.2.2., the problem of 
non-supervised learning will be considered as the problem of estimating parameters in 
a mixture distribution. The unknown parameters are estimated by the stochastic 
approximation algorithm. 

Consider the Eqn. (15) which can be rewritten as in Eqn. (17c) 

= 1Yn-1 + hn(Xn - zn-l) (41b) 

with the initial estimate Xo = 0 and An = n-I satisfying the condition (21). Let 
X be the true value of the mean to be estimated and 

Tn(RL, X2, ... Xn-,) = (1 - An) XnVl f AnX 
- - 

(42) 

Then I Tn($, Xa, ....Yn-l) - X I = I(1 - An) Xn-l + (1 - An) X I  (43a) 

Since Fn = (1 - An) = (1 - n-l) satisfies the Dvoretzky's condition . 

it can therefore be seen that Eqn. (15) also represents a special algorithm of stochastic 
approximation with An being a harmonic sequence. The estimates converge to the 
true mean in the mean square sense and with unity probability. 

Let us now take the following assumptionsl7'ls to estimate the unknown para- 
meters of a mixture distribution using stochastic approximation. 

(a) Learning samples (observations) are drawn from the ixtu;e distribution 

T ,  defined by 

P(Xl4, P) P(X/$I, cj)  P(Ci) (44) 
i 

where 4 = {A, $2, . ..$j, ...dm} and P = {P(C,), P(C,), . . . P(C,), .. .. P(c,) are the sets of 
parameters characterising the mixture distribution function P(X/+, P). The probability 

b 
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density function of the class Cj is characlerised by a set of parameters $j. The a 
priori probabilities P(Cl), P(C,), . . . P(Cj), . . . P(Cm) corresponding to m classes are 
fixed but unknown and 

(b) There exist unbiased estimates of certain statistics (e.g., first moment, second 
moment, etc.) for the mixture. The functional relationship between these statistics 
H = { H ( X ) )  and the parameter sets P and $ is known, i.e. an equation of the form 

is available at each stage of the learning process, 

(c) An equation of the form 

relating 4 and P is also known to result in a unique solution for the unknown 
parameters 4 and P. I 

If these above conditions are satisfied with probability 1, then the true values of 
the parameters $6 and P are defined in the limit by Eqns. (46) and (47). The process of 
learning is then reduced to that of finding the unique solution for 4 and P through 
the functional relationships G, and G ,  where GI can be obtained from the successive 
estimates {H(X))  and G, is given a priori or sought by some auxiliary estimation 
procedures. Several examples for estimation of 4 and P using stochastic approxima- 
tion are givenz. 

3.3.4. Noiz-linear stochastic approximation algorifhm : The relationship in Eqn. 
(32) or Eqn. (41b) defines the linear algorithm where only the first order difference 
(Xn - Xn-J is used in modifying the previous estimate and to arrive at the upto- 
date estimate Xn. An extension of this algorithm to non-linear case had been defined 
by Chienig as 

. - 
where Dn = Xn - 'Yn-1 (48b) 

yn(Dn) is a non-linear function of Dn. This non-linear stochastic approximation 
algorithm is defined to handle spurious patterns like character samples with 
various imperfections due to the poor quality in writing or printing encountered in 
practice. To determine the functional form of An so that the resulting Xn will give a 
minimum mean square error, the following assumption were made. 

(a) Each learning sample is composed of an unknown mean vector under estima- 
tion and an independent Gaussian noise with zero mean and finite variance, i.e., 
condition (33a) is assumed. 

(b) The noise component is considered as a mixture distribution consisted of two 
parts namely, the inherent measurement variation associated with reliable samples and 
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the spurious learning samples those carry unreliable information. Let S1 and S, 
denote the convariance matrices of these noises with zero mean, and (1 - r) and r the 
corresponding probability of occurrences such that 

and r < t l  

Under the above conditions, yn(Dn) is found to be19 

where P(.)  denotes the probability density of the noise component discussed above. - 
Sn represei~ts the covariance matrix of the error vector Sn-, = Xn-, - X at the 
(n - 1)th iteration. Now in order to explain the behaviour of yn(Dn), let us define a 
parameter 

which gives a generalised distance-measure between Xn and 8,-,. 

For genuine learning samples having reliable information for X, d(Dn) is small 
and P,(Dn) > > Pz(DPI). Thus 

yn(Dn) z Sn-1 S l l  Dn (51a) 

For spurious samples on the other hana, d(Dn) is large such that PI(Dn) + 0 
and Pz(Dn) > > Pr(Dn). AS a result, 

Since S, > > Sly the factor (S,-, ST' Dn) will comparatively be insignificant for a 

fixed Snel and Dn. Therefore, one can select a threshold or a boundary Bn such 
that 

Th~s  threshold effect thus gives a good approximation which implies that one can 
simply d~scard the learning samples those are found unreliable (large Dn) and at the 
same time carry out a linear transformation on the remaining reliable samples having 
small Dn values. The non-linear algorithm (48a) can, therefore, be written as the 
following quasi-linear form 
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A comparison of both the linear Eqn. (32) and non-linear Eqn. (53) algorithms 
as implemented on a set of unreliable patterns of English characters along with the 
algorithms for selection of B, and S,-, is reportedlg. 

In order to discard the unreliable samples used in updating the parameters of a 
pattern recognition system, a self-supervised learning algorithm had also been 
developed10''0. Since for all practical problems, the distribution of the members of a 
class in the feature space has a central tendency, the algorithm assumed that the pro- 
bability of misclassification near these central tendencies is substantially low. Different 
'guard zones' were then defined in these regions to play the role of a supervisor whose 
purpose is to postpone the updating programme for doubtful unreliable samples 
(lying outside the guard zones). As a result, the minimisation of the effect of wrong 
classification on the initial parameters of the algorithm is ensured. As the system 
used some inherent properties of the distribution of the same parameters as used by 
the classifier itself, it is called a 'self-supervisory system'. The details of the 
algorithm with selection of an optimum guard zone is described as an adaptive recogni- 
tion of vowel sounds and can be applied in other forms of pattern. 

4. The Problem of Shape Analysis 

The problem of shape analysis, discrimination, recognition, and description is a 
central one in the field of pattern recognition and image analysis. The recent spurt 
of activities in this field is partly because of its application in computer vision, 
robotics, and other diverse fields including military requirements, apart from simple 
applications such as character recognition. The problem of shape analysis, like other 
PR problems is a two-stage process. Firstly, the information reduction process in 
which a compact set of invariant feature of 'shape descriptors' of the object are 
extracted from the binary or grey level image of ihe object. Secondly, these are used 
for discrimination, classification, recognition and description by computers employing 
statistical, syntactic, fuzzy and other mathematical techniques. The methodologies 
employed can be classified according to many criteria as shown in Fig. 6.  Special 
mention should be made of the review and the book by Pavlidis on Shape Analysis, 
however these are also seven years old. 

The two major approaches for developing algorithms for shape analysis are 
(a) boundary based techniques and (b) region based techniques. Boundary based 
techniques are based on the philosophy that ~f the boundary of an object contains 
enough information about its shape then it is natural to retain only the boundary for 
further analysis of the object. In certain cases of this technique we ~ e e d  to extract local 
features, in certain cases we may need global features, and in some other cases we may 
need both. One of the earliest shape descriptors obtained from the boundary of an 
object are the elements of Freeman's chain code where the pattern is represented as 
a string of octal digits. Because these are dependent on size and starting point on the 
boundary, they cannot be used for shape discrimination. But useful information such 
as area, perimeter, curvature, convexity and concavity tree can be obtained from the 
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Figure 6. Classification of shape analysis techniques. -- 

chain code elements. Extensive studies have been made by several authors such as 
Knoke and Wiley, Ladely and Fu. 

One important technique that n,eeds to be mentioned is the method of cCritical 
Points', which according to classical geometry are maxima, minima, and points of 
inflection. The importance of curvature maxima in shape perception have been 
proved by psychological studies and a number of algorithms have been developed on 
these. Obviously, local features are sensitive to noise, dirt etc., and global features 
like elongation, area etc. are better suited in a noisy eavironment. The distinction 
between local and global feature extraction techniques are somewhat like that of a 
context free and context sensitive grammars in syntactic approach. 

Global feature extracti~n methods are based mainly on different orthogonal 
transforms of the boundary of a two dimensional object into a one-dimensional 
periodic function. In one approach by Granland and Roskies, the boundary is 
continuously scanned from a starting point on the boundary and a periodic function 
is obtained with period equal to the perimeter. In the second approach by Searle and 
Schwartz et a/., the length oi' the ratio chords from the centre of gravity of the object 
to the boundary at discrete intervals of angular inclination with respect to a reference 
vector are used as the input sequence to the orthogonal transform to extract shape 
descriptors. These approaches are extensively used to obtain Fourier Descriptors 
(FD's) of different shapes as explained by Person and Fu. The main disadvantage is 
that FD's require normalization to make them invariant to position, orientation and 
size of the object. The other technique is that of R(0) transform. The function R(0) 
is expanded using Fourier Series expansion or Walsh Series expansion and the 
resultant coefficients are used as shape discriminants. A disadvantage in using ~ a l s ' h  
functions was the variance of both amplitude and phase angle spectra to shift in the 
position of the reference vector or the change in orientation of the object shape. Two 
recent methods which try lo reduce this dependence are by Sethi & Sarvarayudu and 
Dinstein & Silberberg of which the former one is information preserving and can 
be used to reconstruct the shape. 



We have already mentioned about the Region Based Techniques, consisting of 
Mask Matching, Structural Decomposition and Thinning Techniques. In shape 
recognition problem, a great deal of information lies in the locus of medial lines of 
strokes. One of the widely studied techniques to obtain the skeleton of a shape is 
the symmetrical axis transform better known as Medial Axis Transform (MAT). 
Most of the research work on shape analysis by our group at the Indian Statistical 
Institute, Calcutta is based on region based techniqnes. Two important contributions 
are (I )  Theoretical development of a new definition of shape and (2) Fuzzy recogni- 
tion and description of sides and symmetrics, A list of relevant references mentioned 
in the above discussion is given at the end21-31. 

5. Detection of Man-Made Objects Using Local Shape Descriptors-Application of 
PR Techniques in Automatic Undersea Search 

Automatic undersea search operations for man-made objects on the ocean bed is 
an extremely important and sensitive subject. Though for a successful operation it 
is expected that multiple sensors such as side scan sonar, scanning sonar, magneto- 
meters, television and underwater photographs will be needed but so far the reported 
work is limited to optical photographs only and the methodology involved is autoina- 
tic shape analysis in distinguishing between man-made object and empty ocean floor 
from the photographs. 

It is well known that in the past undersea search operations have been carried out 
by using men to recognise the target being sought The Naval Research Laboratory 
of Washington has some reports of some search operations including the search of the 
Thresher and Scorpion submarii~es as well as the hydrogen bomb, which was lost off 
Spain. It was reported that the data from these operations were often hard to 
interpret and subject to human errors. But modern techniques are being developed 
on automating such operations. High resolution sensor is useful in obtaining detailed 
shape. However, its range is greatly limited if the necessary high frequency is 
used to obtain adequate details. Recognition of man-made objects by sonar 
is particularly difficulf in areas which contain a large number of boulders and rocks. 
Magnetometers are useful in locating steel sheets. However, their detection ranges 
are relatively high with existing equipment. Besides, false alerts are frequent in areas 
where the bottom contains some natural object that exhibits magnetic properties. 
Though TV underwater photographs are good for such inspection purposes, but its 
range is limited to approximately 35 feet due to back-scatter problems. Sides-scan- 
sonar records are reported to be very difficult to interpret and analyses of photographs 
is also subject to human error. It is reported that the photographs which displayed 
the Thresher submarines draft markings were initially observed and set aside as of 
no value. It was only on later reflection that an operator discovered the draft 
markings. 

Optical sensors are reported to be successful in numerous search missions. On the 
Thresher and Scorpion search operation film cameras were the primary sensor used to 
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locate the submarines. The major limitation of conventional cameras is that their 
range is limited to ten meters from the bottom. As a result, the area coverage is 
relatively small per exposure. The major limit factor to conventional camera system 
also in sea water is the back-scatter, and the maximum distance is of the order of ten 
meters only. The first method used to reduce back-scatter was to move the camera 
laterally away from the light source. A second technique puts the light beneath the 
camera. A third technique known as light behind the camera (Libec) system (Fig. 7) 
was developed by Naval Research Laboratory, Washington. In this case the light 
source is above the camera and the coverage per frame increases by a factor of four 
over a conventional camera. A system was designed to achieve underwater photo- 
graphs at a distance of 70 meters with a rerolution of 2.4 milli radium and field view 
of 64". The fourth technique is known as Range Gating and is also reputed to be 
very successful in avoiding back-scatter problem. 

Besides the back-scatter problem, there is a fundamental resolution limit which 
results from forward scattering from particle and which creates blurring of the 
image. 

With the help of different shape descriptors a decision can be made on whether a 
given image contains man-made objects. The assumption behind this method is that 
man-made objects tend to have longer and smoother edges than natural objects, and 
that the orientation of their edges tends to concentrate in a few directions. So the edge 

Figure 7. Geometry o f  the LIBEC system. 



D Dutta Majumdar 

Figure 8. Optical underwater photographs : 
(a) Ship on ocean floor (taken at 9 m), 
(b) Ship on occan floor (taken at 14 m), 
(c) Empiy ocean floor. 

Figare 9. Results of edge detection. 
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Figure 10. Results of piecewise linear approximation. 

extraction problem through (a) edge detection, (b) thinning, (c) linking, and (d) some 
sort of piecewise linear approximation of the edges, shape descriptor such as average 
length per edge limit, average angle change per unit length and edge orientations 
histogram, can be calculated. With the help of this local shape descriptor, some 
texture features and global shape features, one can distinguish between man-made 
objects and ocean floor. However, there are many different types of ocean floors. 
Some of them contain sea plants or large rocks that contain edges which are also 
relatively longer and smoother and tend to orient in a few major directions. For 
such cases some other features than local shape are needed. 

Fig. 8 shows optical underwater photographs with (a) ship on the ocean floor 
(taken at 9m), (b) ship on the ocean floor (taken at 14m) and (c) empty ocean floor. 
Fig. 9 shows the results of edge detection algorithm and Fig. 10 shows the results of 
piecewise liner approx~mation algorithm for linking. 
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