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Abstract. The effects of a scattering medium on the performance of time delay estima- 
tion are considered. The medium is assumed to exhibit angular scattering, causing 
angular (as well as delay) dispersion and hence loss of signal coherence across the 
array aperture. Both the variance (via the Cramer-Rao bound) and the bias intro- 
duced in the time-delay estimates are studied. The results have been converted to 
bearing and range error standard deviation and bias. It is found from these studies 
that there is an optimum range of values for the separation distance between the 
sensors in the design of an array for time delay estimation, for range and bearing 
measurements. 

1. Introduction 

The time delay estimation problem in white Gaussian noise has been extensively 
studied in the literature. The measurement of time delays of a signal received at 
several locations is particularly important for source localization1. A number of 
workers have therefore analyzed the performance of the range and bearing estimators 
based on the delay estimates and the geometry of the problem, in terms of variance 
and bias2-4. Some studies have also been reported on the effects of moving targets 
and/or platforms on the performance of time delay estimators. 

The purpose of this paper is to present some results on the effects of a scattering 
medium on the estimation performance. For simplicity, the medium is assumed to 
exhibit angular cattering, scausing angular dispersion and hence loss of signal 
coherence across the array aperture. The performance in terms of variance is studied 
via the evaluation of the Cramer-Rao lower bound, which is known to be achieved 
by the maximum likelihood estimator presented by Carter6. The bias introduced by 
the TDE is also studied. These results have been converted to the standard deviation 
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and bias of the resulting bearing and range estimates. Numerical results are present- 
ed for different SNR7s, and sensor separation distances as a function of a 'spatial 
coherence loss coefficient' introduced in the sequel, for typical signal spectra and 
observation intervals. 

It is found from these studies that there is an 'optimum' value for the separation 
distance in the design of an array used for time delay estimation. The optimum 
distance depends not only on the scattering loss coefficient, but also whether we intend 
to minimize the bearing error variance or the range error variance, or the correspond- 
ing biases. Fortunately, however, the performance curves are quite flat near the 
minima, so that a reasonable compromise is easy to obtain. 

2. Model for the Scattering Medium 

2.1 GeneraIized Scattering Function 

In a genera$ scattering medium, the transmission characteristics of the medium depend 
on space and time parameters. The five-dimensional vector may be introduced as 

3 

pi =; [A, ti, X i ,  Yi, Z I ] ~  (I) 

wherefi, ti are frequency and time parameters and ( x i ,  y,, z i )  are space parameters. 
-+ 

Thus, in the most general case, the transfer function H ( . )  depends on the vector p,. 

The assumption made here is that the transfer function process is stationary in 
time, frequency and space. Defining the difference vector 

+ 3  + 
P = p1 - PA = [Af, At, Ax, Ay, AzlT (2) 

The space time correlation function of the medium can then be defined as 

3 

A dual, 'transform domain' vector q is defined as 

where T = delay spread, and 

4 = doppler spread 

and where u, v and w are spreads in the angular domain and related to the direction 
cosines a, p, y as shown below : 

1 
U =- - COS a 1 

A I 
1 I v = - cosp ) 
h I 
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3 

where A is the wavelength. The generalized scattering function L(q)  is then obtained 
as the five-dimensional Fourier transform of the space time correlation function : 

-+ + +  + 
c ~ 6 )  = I R H ( P )  exp (.i2npp. y) dp 

-+3 3 3 3 

(6) 

where p . q  represents the scalar product between the vectors p and q and dp is the 
5-dimensional volume element 

+ -+ 
The inverse transform of L(q) yields &(p) : 

k -+ 

ii- The scattering function L(q)  describes the distribution of the signal power with respect 
to channel delay T, doppler 4 and the three angular coordinates u, v and w. 

k 

2.2 Special Case of Angular Scattering 

Here consider a simple example of a hypothesized medium, which has only angular 
scattering in one direction has been considered. In other words, the space-time 
correlation function is assumed to depend only on the separation distance Ax, so that 

3 3 

the vector p becomes a scalar variable Ax, and the vector q contains the scalar vari- 
1 1 

able u = - cos U .  Let 0 = 90-U, so that u = - sin 0 .  Then 
h h 

q e )  = j RH(Ax) exp (,j2nAx sin 0/A) 4 A x )  (9) 

In order to get a clear picture of the above relation, it is instructive to obtain Eqn. (9) 
from elementary principles for the case of two sensors separated from each other by 
a distance Ax, as shown in Fig. 1. 

Assume that the source is transmitting an impulse 6 ( t ) .  Due to angular scatteriag, 
the two sensors receive energy irom, say N, different directions, i.e. from N different 

4 SENSOR 2 ti SENSOR 1 X 

Pigure 1. The array geometry for time-delay-estimation. 
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plane waves. The k'th plane wave arriving from direction Or has the associated delays 
.rk f Ax sin 0k/2~ t?t the two sensors, where r k  is the delay of the plane wave to the 
midpoint along the line of the two sensors. Thus the impulse response of the medium 
to the two sensors is given by 

((t, * 9) = ,f a&(t - -n + - sin ~k 
2c 

k = l  Ax ) 
where ak is the strength associated with the k'th plane wave. The corresponding 
transfer functions are given by 

N 
Ax sin B.)] H(A * 2) = 1 ak exp[j2nf(- i r  i 

k = l  

In the limiting case, when we assume a continuum of plane waves arriving from all 
directions (L 0, to Om) where em is small, we have 

-em 

where a(0) and ~ ( 0 )  now represent the path strength and delay, respectively, associated 
with the plane wave arriving at an angle 0. 

The space time-correlation function for this case, then becomes 

= j Eia(0) a(O1)] exp (j2n [r(O1) - #I)]) 

Ax 
exp [- j Z ~ f  - (sin 0' - sin B)] dB' d0 

! C 
(13) 

Assuming, uncorrelated scattering, the equation obtained is 

E[a(0) a(0') exp (j2xf [r(0') - ~(8)]) iL(0) 6(0' - 0) (14) 

which implies that it is zero when 0 # 0'. This gives 

em , 

Rfi(Ax) = I I L(0) S(0' - 0) exp (sin 0' - sin 0) dB' dB 

- o,,, 
I 

= J L(O) exp [- j2nfT sin 0 do 

- 8"' 
Ax I 

which is the same as Eqn. (9), as required. 
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2.3 Remarks 

(1) The one-dimensional scattering function L(0) introduced above presents a highly 
simplified picture of the real medium characteristics, in that it does not reflect the loss 
in coherence between the signals at the two sensors (or across the array aperture, as 
the case may be) due to other effects of scattering, viz. spreads in the delay and 
doppler domains etc. However, the simplicity of the resulting model not only permits 
easy evaluation of its effect on the time delay estimation performance, but also makes 
the interpretation of the results simpler. It is, of course, of interest to generalize the 
results to be presented in the next section for more general scattering models. 

(2) It has been shown that if the scattering surface is assumed to have a Gaussian, 
space-time autocorrelation function, then the resulting scattering function also has a 
Gaussian shape'. Thus, if it is assumed that 

1 
L(0) = -- exp (- 03/202) 

'r 4 2 x  G 

then 

where o is defined to be 'spatial coherence loss coeflcielzt '. 

It is this correlation function which is used in the next section for typical perfor- 
mance calculations. 

3. Performance of ~ i k e  Delay Estimators in Incoherent Media 

3.1 Cramer-Rao Bound for TDE 

Carter5 has derived an expression for the variance of the time delay estimate in the 
neighbourhood of the true delay, for a general-.cross-correlator receiver with a weight- 
ing functions Wg( f )  (Fig. 2). This is given by 

Ga,xn(.f) = cross spectrum of the tuo signals x,(t) and x,(t) received at 
the two sensors (19a) 

Gxlal 
(f ), Gz . (f) =. Auto spectra of x,(t) and x,(t) respectively 

2 a (19b) 

C,,( f) - Magnitude square coherency function 
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- 
H 2 (f) M L A Y  

Figure 2. Generalized cross-correlator for time-delay-estimation. 

T = observation intervel (19d) 

In particular, it has been shown that for the maximum likelihood processor, with 

the variance is given (under high SNR conditions) by 

which is identical with the Cramer-Rao lower bound giving the minimum obtainable 
variance for delay estimation. It is this bound which has been evaluated in the sequel 
to compare the, performance in an ideal medium with that for a non-ideal or scatter- 
ing medium. 

It is easy to see that, for our case, 

XIlf) = SCf)  ~ ( f ,  - F) + NAf) 

and 

where S(f) is the spectrum of the desired signal, D is the delay to be estimated and 
N,(f) and N2(f) are the spectra of the noises in the two sensors, assumed to be statisti- 
cally independent w.r.t each other as well as with the signal of interest. It follows 
that 
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x exp ( j2xfD)  N f ,  - + Na(f TI 
= G8,( f )  exp (- j2nfD) &(AX) (24) 

where G , , ( f )  A E{ I S ( f )  1 2, is the auto spectrum of the signal. 
S 

Thus the value of the cross-spectrum GZlt2 ( f )  and hence of the coherency function 

C,,(f) would depend on the separatio~ between the two sensors. 

A close examination of Eqns. (21) and (24) clearly shows that for the scattering 
medium considered in the previous section, as Ax increases, GzlSa (f) decreases and the 

variance of the delay error increases. 
I 

3.2 Bearing and Range Error Variances 

The bearing error variance is related to the time delay error variance by the relationa 

C 
Oe  = -- 

AX sin o OD 

where c is the velocity of sound in the medium, OD is the variance of delay estimation 
error and 0 is the true angle of the source. 

For an ideal medium, therefore, the bearing error variance decreases as the 
separation distance between the sensors is increased, even though it is very high for 
small angles of the source (say 0 < 20"). 

Since in a scattering medium, OD is expected to increase with. sejaration distance 
due to coherence loss, it follows that there will be an optimum dtstadce fof which 00 

is minimum. This is demonstrated in the next section, ,where detailed numerical 
results are presented for the performance. 

Range can be evaluated with the help of a minimum of three sensors. Let the 
distance between both adjacent pairs of sensors be equai slid the bfaring from both 
the pairs be same and equal 0 .  Assuming that OD as obtained from both pairs is 
also same, it can be shown that3 

o i  = range error variance 

where R is the true range. 

Once again, unlike in an ideal medium where the performance is expected to 
improve as the square of the separation distance, for scattering medium, a range- 
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dependent optimum separation distance would yield the minimum value of the range 
error variance. 

3.3 Bias Effects 

Quazia has derived expressions for the bias introduced in the bearing and range 
calculations from time delay measurements. The results are reproduced here for 
convenience : 

eg = bearing bias = - (a; cot $)I2 (27) 

where 0 is the true angle, and 

4 RB = range bias = - 
R 

where R ig the true range. 

It is seen that bias in angle measurement is very high for small ahgles (0 ( 20") 
and is always negative. The range bias, however, becomes significant only when 
the range variance is of the order of true range. 

4. Typcial Performance Calculations and Numerical Results 

In this section we present typical performance curves for the estimation of bearing 
and range from time delay measurements in scattering media. The parameters 
selected for study are the effects of SNR, separation distance between the sensors and 
the 'spatial coherence loss coefficient' introduced in section 11. 

The signal and noise spectra are assumed to be flat and bandlimited between 
3500 Hz and 4500 Hz. It was felt that the performance of the ML estimatot is mainly 
dependent on SNR, rather than the signal and noise spectra, hence spectrum was 
not taken as a parameter in these studies. The observation time is taken to be 
50 sec , and has not been varied since performance is known to be directly propor- 
tional to T. 

In order to provide a 'benchmark' of comparison, the performance of the maximum 
likelihood estimator in an ideal medium and additive Gaussian noise is first briefly 
summarized. 

4.1 Pevformance of TDE in Additive Noise in an Ideal Medium 

The important performance features of range and bearing measurements in an ideal 
medium, based on the formulae of the previous section, are illustrated in Figs. 3 and 
4. The following observations can be made regarding the range and beariqg standard 
deviation : 

(i) The bearing standard deviation, a*, varies inversely with the separation distance, 
even though aD is independent of distance in an ideal medium (Fig. 4). 
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(iii) The range standard deviation OR also displays a similar inverse relationship with 
respect to SNR and separation distance between sensors (Figs. 3 and 4 respec- 
tivel y). 

Although no performance curves are presented here for the range and bearing bias, 
the following conclusions can be readily drawn from their straight forward relation- 
ships with range and bearing standard deviations : 

(i) For a true bearing angle of 0 = 90", the bearing bias is zero. For small angles, 
however, the bias is very high. The behaviour with respect to separation 
distance and SNR is as for the standard deviation. 

(ii) The range bias is also highly dependent on the true range and bearing. The 
bias, like the standard deviation, is least for a true bearing of 90". 

(iii) The range bias is, once again, inversely dependent on the separation distance and 
SNR, being as low as 0.316 meters for a 90' bearing, -20 dB SNR, separation 
dispnce of 150 meters and a true range of 5000 meters. 

4.2 Performance of TDE in Scattering Media 

For the following results, the spatial correlation function of Eqn. (17), corresponding 
to one-dimensional angular scattering in the medium, is used for calculating the cross 
spectrum between the two received signals x,(t) and x,(t) via Eqn. (24). The auto 
spectrum is not affected because RH(O) = 1. The time delay estimation error is 
computed via numerical evaluation of the integrals involved in Eqn. (21), which in 
turn is used for the computation of bearing and range error standard deviations and 
bias. In order to study the effect of the medium, two exlrem values of a are chosen, 
viz. o = 0.001 and = 0.01. Figs. 5 to 8 demonstrate the important performance 
features of range and bearing measurement in a scattering medium. The following 
important observations can be made : 

1 

(i) Although the bearing error performance improves with SNR as in the ideal 
medium case, it is found that for equal SNR's variance in the ideal medium 
case is considerable less. For example, for an SNR of -20 dB, the bearing 
standard deviationis 9.6 x degrees in an ideal medium as against 55.3 x 10-3 
degrees in the scattering or incoherent medium (Fig. 5). 

(ii) The bearing standard deviation (BSD) is plotted against the sensor separation 
distance in Fig. 6. As expected, we have an optimum separation distance for 
the minimum value of BSD. For the two cases shown here, i.e. o = 0.01 and 
a = 0.001, the optimum distances are 8 meters and 75 meters respectively, 
whereas the corresponding minimum values of BSD are 6.7 x degrees and 
0.673 x degrees respectively. It is interesting to observe, however, that in 
each of these two cases, the performance remains nearly constant (equal to the 
optimum value) where the separation distance is varied around the optimum 
value. 

(iii) Similar conclusions can be drawn for the range error performance, as summariz- 
ed in Figs. 5 and 7. Once again, a considerable loss in SNR performance is 
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evident for the non-ideal medium. For example with a true range R = 5000 
meters and a separation distance of 150 meters, the range standard deviation 
(RSD) at -20 dB SNR is 39.7 meters in the ideal medium and 227 meters in the 
non-ideal medium (a - 0.001). 

Similarly the RSD curves against separation distance (Fig. 7) exhibit the existence 
of optimum values for minimum value. Thus the optimum separation distance is 
110 meters for o -- 0.001 (with RSD = 3.76 meters) and 1 1  meters for a = 0.01 
(with RSD = 376 meters). Once again, however, the curves are reasonably flat 
around the minimum, though not as flat as for BSD. 

(iv) Similar conclusions can also be seen to be applicable for bias in range measure- 
ments. The results are summarized in Fig. 8. 

5. Conclusion 
i: 

It can be concluded that the concept of an optimum separation distance is a very 
important parameter in the design of an array for range and bearing estimation 
based on time delay measurements. The optimum separation, however, depends not 
only on the scattering loss coefficient but also whether we intend to minimize the 
bearing error or range error standard deviation, or the corresponding biases. Hence 

WR = OdB 

TRUE R A W  s 5000 m 

bX (d 

Figure 7. Dependence of range standard deviation on sensor separation distance: 
non-ideal medium. 
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Figure 8. Dependence of range bias on separation distance. 

. the design of the array calls for an appropriate compromise. Fortunately, however, 
the performance curves are quite flat near the minima, so that a reasonable compro- 
mise is easy to obtain. 

Z 
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