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Abstract. This paper reports the development of an algorithm for the processing of 
data from an array of broad-band sensors using lattice type processor. The problem 
is to enhance the look-direction signal in the presence of spatially distributed inter- 
ference sources and sensor self noise by employing a multi-channel processor subject 
to the constraint that it has a desired response for look-direction signals. The multi- 
channel lattice algorithm proposed here possess stage by stage decoupling, and do not 
involve an arbitrary size of the step length, unlike conventional tapped-delay-line 
algorithms. 

1. Introduction 

The requirement for processing of data from multi-element sensors exists in numerous 
and diverse fields, such as in passive sonar signal processing of hydrophone array 
data; for sidelobe suppression in antenna arrays; in seismic processing for profiling 
multi-layered media. 

Passive sonar array data which represents incident acoustic signals in broad-band 
noise, usually covers a wide frequency range. After pre-processing the data, adaptive 
processing techniques are usually employed for locating the source direction. For 
narrow-band (single frequency) data, a directional spectra accomplishes a mapping of 
the magnitude of the radiated power impinging on the array from various directions 
in space. For broad-bard data, the problem is to enhance the weak look-direction 
signal in the presence of spatially distributed interference sources and sensor noise. 
Usually this problem is addressed by employing a multi-channel processor subject to 
the constraint that it has a desired frequency response for look-direction signals. 

Techniques for dealing with the narrow-band data have been dealt extensively by 
Gabriel1 where the filter coefficients are computed for generating the directional wave 
spectra. This problem is not addressed in this paper. The conventional techniques 
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of dealing with the broad-band data are concerned with the use of tapped-delay-line 
filters (Fig. 1) with adaptive tap weights for nulling out interference source signals2. 
While these techniques have the advantage of simplicity and comparitive ease of 
computing they tend to be slow in convergence rates, and are susceptible to the 
choice of arbitrary step size, and to the associated ill-conditioning of the covariance 
matrices of the array data. 

- - - - **, 
N I L  W ~ t l  OUTPUT 

\ \ \ \ i 

SIGNAL OUTWT 

Figure 1. Broad-band array processor and equivalent processor for signal coming 
from look-direction. 

Cantoni & Godara'sa algorithm is a combination of Frost3 & Ljung et al." recur- 
sive least mean square estimation algorithms for adaptive beam-forming for a Frost 
type processor with constraints. The recursive algorithm of Ljung et a1.4 exploits the 
shift property of the array processor states to reduce the computational burden. 
Recursive least squares algorithms usually converge more rapidly than gradient based 
algorithms but at a price. The gradient based algorithms are not only slower in 
convergence on a per sample (or iteration) basis but also the saniples used need to be 
independent, so that the real time Interval between iterations is longer than for recur- 
sive least squares. Even though the algorithm of Cantoni & Godara converges faster 
than Frost's algorithm, the algorithm is highly susceptible to the step size. 

Lattice structures, introduced by Itakura5 for speech analysis, have several attrac- 
tive features which make them potentially preferable to tapped-delay-line filters. 
Their modular structures, stability, properties, successive orthogonalization and 
decoupling of their residuals of each order, and superior convergence behaviour are 
well known for the lattice algorithnls6. In this paper the use of adaptive lattices is 
extended to the processing of data arising from an array of sensors, and an dgorithm 
is proposed, which can be conveniently implemented as constrained multl-channel 
lattices. The philosophy employed here is that : data from an array of sensors is 
fed to multi-channel lattices with adaptive reflection coefficients, the output power qt 
each multi-channel lattice stage is minimized, subject to the constraint that for logk- 
direction signals, which appear as identical signals on all input sensors, the multi- 
channel lattices collapse to a single-channel lattice with known reflection coeffigtents. 
The known reflection coefficients ensure that the processor offers a chosen frequency 
response to the look-direction slgnals. 
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2. Conventional Form of Constrained Processor 

As a preamble to the constrained lattice processor, consider the conventional tapped 
delay line filter. Let the data sequence {X(k), k = 1, 2, ..Nj be the observations from 
an array of L zensors and M tap weights (Fig. 1) such that X(k) is an (LM x 1) vector. 
Since the look-direction frequency response is fixed by the M a-priori constraints, 
the cost criterion for minimizing the total array output power is given by : 

where 

R,, is the covariance matrix of the input data 

C is the constraint matrix 

X is the Lagrange multiplier 
d 

and f - is the constraint matrix 

WOpt is found by minimizing J with respect to _W and satisfying the constraints, this 
leads to 

A hill climbing algorithm for _W is given by 

Y(k + 1) = P [E(k) - pR,zW(k)] + P'f - 

P = I - C(CTC)-' CT 

P' = C(CTC)-I 

and c",k) = (1 - a) c: (k - 1) + u_XT(k) g(k) (39 

a n d O < a >  1 

..\ 

3. Constrained Lattice Algorithm 

Consider the data sequence (&(k), k - 1, 2, ... N }  as the equally spaced observation 
from an array of L sensors, such that each z(k) is a ( L  x 1) vector. Fig. 2(a) repre- 
sents the direct form of the lattice processor for array data, where each stage is 
identical. Fm(k) and qm(k), are the outputs of each stage, which may be referred to 
as the forward and backward residuals. K,  and Lm may be called the forward and 
backward reflection coefficients and each is an (L x L) matrix. 

To generate a constrained lattice processor, we recast the linear weight constraints, 
such as CTW - f of Eqn. (1') into constraints on the reflection coefficient matrix. - 
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Ib) 

Figure 2. Constrained lattice algorithm processor. 

The constraints to be applied to the multi-channel lattice processor are : 

where _hT == [ I ,  1, .. . , 1, 11 is a (1 x L) unit vector and am(m) is the constraint on the 
mth stage, and it is the equivalent scalar (known) reflection coefficients of this filter 
which ensure desired response of the processor to the look-direction signals. 

The approach is to minimise the output power at each stage {E[F: (~C)  F_m(k)] and 

E ~ G ~  (k) G,(k)]) subject to the constraint that h T K m _ h  and hTLrnh reduce to predeter- 

mined scalar constants a,(m). The stage by stage output minimization involves the 
following criterion (for the mth stage) 

k 
T J,  = Min 4 I; {ti ( t )  Fm(t) f. cm ( t )  Grn(t)] 

K,",L, t = l  

Here the constraints representing reflection coefficients of the desired single channel 
filter a,(m) are embedded into the cost criterion. The two sets of scalar Lagrange 
multipliers {Am, p,, m = 1 ,  2, ..., M). Note that such a constraint needs to be applied 
across each order (stage) of tve lattice processor. However, as the optimization in the 
lattice processor progresses from stage to stage, it is necessary to consider any mth stage 
as given here. The mth stage pred~ction error residuals are given by Jones7 as 

I;m(k) = _Fm-l(k) - KmGm-l(k - 1) (6)  
and 

Grn(k) = Gm-,(k - I )  - LmPm-,(k) - (7) 
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The cost criterion Jm in Eqn. (5) is minimized from the time sample t = 1 to t = k .  
This implies that the forward error residual F,,(t) is updated on the basis of kth value 
of the reflection coefficient matrix K,. Replacing K, in Eqn. (6) by Km(k), and 
substituting from Fm(t), leads to 

k 
Jm = Min 4 I; {Fm-l(t) - Km(k) Gm-i(t - 1))T 

Km t = l  

Applying Kronecker products to Eqn. (8) and differentiating it with respect to Vec 
(Km(k)) and arranging it results ia 

k 
( x - 1)  G-1 ( t  - 1 )  Q I ) )  Vec (Km(k) 
t = 1 

- &(k) (@r Q I )  Vec ( I ) / _ ~ T &  (9) 

where @ denotes Kronecker products 

Defining 

Applying Eqn. (10) in Eqn. (9) leads to 

k 
(Sm(k) @I I)-"ec (Km(k)) = ( x (Gm-l(t - I )  _F:-~ ( t )  @ I )  Vec ( I ) )  

t=  1 

+ (Grn-l(k - 1)  ~ : - ~ ( k )  Q 4 Vec 

- A,(k) (hhr Q I )  Vec (I)/&Tb ( 1  1) 

modifying Eqn. ( 1  I) leads to (here the same term is added and subtracted), 

(Sm(k) @ I)-' Vec (Km(k)) = (Sm(k) Q I)-' Vec (Km(k - 1))  

- (Cm-i(K -- 1 )  2: ( k )  I). Vec I 

- (/\,(k) - hm(k - 1))  hbT Q I )  Vec (I)/hTb (12) 

where ( L ( k )  @ 1) Vec ( I )  = (&-I ( k )  63 I )  Vet ( I )  

- (!?:-I (k  - 1 )  I> Vec ( K ~ , ,  (k - 1) (13) 
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premultiplying Eqn. (12) by (Sm(k) I) and applying the constraint ( b T  @ hr) Vec 
(Km(k))/&Th = am(m), and solving it we have 

Vec (Km(k)) = P [Vec (Km(k - I)) + (Sm(k) @ I )  (_Gm-,(k - 1 )  

x (E: ( k )  63 I )  Vec I ]  $- P' a,,(m) 

where 

P - I -. (Sm(k) @ I )  (4hT @ I )  Vec I {(hT @ &T) (Sm(k) Q I )  

x (&T Q I )  Vec I)-1 ( h T  Q h_T) 

and 

P' = (&(k) Q I )  (&T Q I )  Vec I {(hT @ hT) (Sm(k) Q I )  

x ( b h ~  o I )  ~ e c  11-1 (kh~ ( 1  6)  

From gbove it may be seen that - hT p = 0, and ( h T  Q &T) Pp.  = I 
hq- ' 

Hence 

Satisfy the desired constraint. 

Also from Eqn. ( 1  1 )  

Applying the matrix inversion lemma to Eqn. (17) 

Similarly, the backward reflection coefficient may be obtained by minimizing Eqn. (5 )  
with respect to Vec (Lm(k)), we have 

Vec (Lm(k)) = Q [Vec (Lm(k - 1)) + (Tm(k) Q I )  {Em-,  ( k )  
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where 

(G; (k)  Q I )  vec I - (G,,,-,(k - I )  0 I)  Vec I 

- (Em,(k) Q I) Vec (Lm(k - 1)) (20) 

Q = [I - (Tm(k) Q I)  @hT Q I)  Vec I {(kr Q hT) (Tm(k) Q I )  

x (I@ Q I) Vec I)-' (hT 69 hT) (21) 

Qr = (Tm(k) Q I )  (hhT Q I) Vet I {(hT @ hT) (Tm(k) Q I)  

x ( h h ~  Q I )  Vec 1)-I ETh (22) 

and 

T x [I + (Ern-1 (k)  @I I )  (Tm(k - 1 )  Q I) (Em-dk) 69 I)]-' 
I 

x (_F;-I (k)  Q I )  (Tm(k - 1) Q I j  (23) 

The matrices P and Q represent (L2 x L2) projection operators, P' and Q' are projec- 
tion vectors and (Sm(k) x I)-1 and (Tm(k) x I ) - I  are instantaneous covariance 
estimates of forward and backward residual vectors Fm(k) and G,(k). The projection 
operators are idempotent, in that matrices P. P = P and Q.Q = Q. Eqns. (14) & 
(19) satisfy the constraints set up in Eqn. (4).  Equation (14), (19), (6) and (7) repre- 
sent an exact solution to the constrained optimization problem as posed in Eqn. (5) ,  
and yield a multi-channel lattice structure which minimizes the output power for each 
stage while maintaining a desired response for the look-direction signals. The com- 
putations are recursive both in time and in stage order. The exact solution requires 
the time updating of Fm, Gm, Km, Lm, Tm and Sm at each stage. A processor which 
implements the above algorithm is given in Fig. 2. 

4. Results , 

Both the conventional and lattice algorithms were employed to compute the constrain- 
ed weights of the tapped-delay line-filter or the constrained lattice reflection coefficientL 
matrices interatively. The weights or the reflection coefficients are used to compute 
the output power in the case of conventional algorithm and power at each stage of 
lattice for lattice algorithm. Both the curves are plotted on the same axis against 
number of iterations for the following example. 

Example : A linear array with five equally spaced omnidirectional elements and 
%ur tapped delay-line sections is used. The look direction signal is arriving from the 
broad-side of the linear array. The interference sources are impinging on the array 

; at -6W and 45O relative to the broad-side signal. 

The desired look-direction signal response and the signal specifications are illus- 
trated in Fig. 3. Fig. 4 shows the convergence characteristics of the residual noise 
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Figure 3. Frequency response of the processor in the look-direction. 
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Figure 4. Comparison of convergence rates constrained frost algorithm and direct 
constrained adaptive lattice algorithm. 

and interference source power at the optput of various stages of lattice and the output 
of the array processor for the conventional algorithm. Note that the lattice algorithm 
converges much faster than Frost" algorithm. The convergence reaches the stable 
values at 50th iteration of the third stage of the lattice where as the conventional 
algorithm is still converging at k = 800. The first two stages of the lattice do not 
provide useful information regarding the convergence for the lattice algorithm. 

- 
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